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Abstract: Superoxide dismutases (SODs) are metalloenzymes that play a major role in antioxidant
defense against oxidative stress in the body. SOD supplementation may therefore trigger the endoge-
nous antioxidant machinery for the neutralization of free-radical excess and be used in a variety
of pathological settings. This paper aimed to provide an extensive review of the possible uses of
SODs in a range of pathological settings, as well as describe the current pitfalls and the delivery
strategies that are in development to solve bioavailability issues. We carried out a PubMed query,
using the keywords “SOD”, “SOD mimetics”, “SOD supplementation”, which included papers
published in the English language, between 2012 and 2020, on the potential therapeutic applications
of SODs, including detoxification strategies. As highlighted in this paper, it can be argued that
the generic antioxidant effects of SODs are beneficial under all tested conditions, from ocular and
cardiovascular diseases to neurodegenerative disorders and metabolic diseases, including diabetes
and its complications and obesity. However, it must be underlined that clinical evidence for its
efficacy is limited and consequently, this efficacy is currently far from being demonstrated.

Keywords: antioxidant; superoxide dismutase; supplementation; detoxification

1. Introduction

Superoxide dismutases (SODs) are metalloenzymes found in eukaryotes and some
prokaryotes and as shown in Figure 1A, they are localized in the cytosol and the mitochon-
drial intermembrane (Cu, Zn-SOD or SOD1), the mitochondrial matrix and inner membrane
(Mn-SOD or SOD2) [1], and extracellular compartment (Cu, Zn-SOD or SOD3) [2].

Since their discovery by Joe McCord and Irwin Fridovich [3], their role as a major an-
tioxidant defensehas been firmly recognized [4]. The work by I. Fridovich and collaborators
was crucial in defining the role of oxidant/antioxidant processes in ischemia/reperfusion-
associated pathologies in humans and animal models [5,6].

SOD catalyzes the conversion of the superoxide anion free radical (•O2
−) to hydrogen

peroxide (H2O2) and molecular oxygen O2 (Figure 1A,B). Subsequently, H2O2 is reduced
to water by the catalase (CAT) enzyme, glutathione peroxidase (GPx), and/or thioredoxin
(Trx)-dependent peroxiredoxin (Prx) enzymes (Figure 1B). H2O2 may also generate another
reactive oxygen species (ROS), the hydroxide ion (•HO) via the Fenton reaction in the
presence of Fe2+ (Figure 1B).

H2O2 is an essential sensor in redox metabolism. Its levels are critical to oxidative
stress: under physiological conditions, when H2O2 intracellular concentration are 1–10 nM,
it mediates the stress response involved in the physiological and adaptive processes called
oxidative eustress; higher concentrations (more than 100 nM) are responsible for the
so-called oxidative distress, in which the evoked inflammatory response leads to cell dam-
age [7,8]. Considering the endogenous antioxidant system involved in H2O2 production
and removal, a parallel dual role, physiological and pathological, can also be recognized
for all the enzymes involved. SOD activity may therefore have a double and opposite
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meaning [9]: firstly, it is an antioxidant enzyme when its activity is coordinated with either
the CAT, GPx or Prx/Trx enzymes, which avoid H2O2 accumulation by neutralizing it into
H2O; secondly, SOD may act as a pro-oxidant as H2O2 can overaccumulate, leading to ROS
overproduction and cell toxicity [7].Molecules 2021, 26, x FOR PEER REVIEW 2 of 39 

 

 
Figure 1. Superoxide dismutase enzymes. (A) Superoxide dismutases (SODs) are metalloenzymes constitutively expressed 
in eukaryotes: SOD1 is a Cu, Zn-SOD and is present in the cytosol and the mitochondrial intermembrane; SOD2 is a Mn-
SOD localized in the matrix and inner membrane of mitochondria; SOD3 is a Cu, Zn-SOD expressed in the extracellular 
compartment. Nevertheless, all three forms catalyze the conversion of the superoxide anion free radical (•O2−) into 
hydrogen peroxide (H2O2). (B) In detail, SOD converts the •O2−, generated in several cellular insults/metabolism, into H2O2 
and molecular oxygen (O2). The resulting H2O2 may undergo reduction to water via catalase (CAT), glutathione 
peroxidases (GPx), or thioredoxin (Trx)-dependent peroxiredoxin (Prx). Otherwise, H2O2 originates •OH via the Fenton 
reaction in the presence of Fe2+. •O2− may also react with •NO originating the oxidant and nitrating agent peroxynitrite 
(ONOO−), which further contributes to oxidative-stress damage. GSH = glutathione; GSSG = glutathione disulfide; TrxSH2 
= reduced thioredoxin; TrxS2 = oxidized thioredoxin. 

H2O2 is an essential sensor in redox metabolism. Its levels are critical to oxidative 
stress: under physiological conditions, when H2O2 intracellular concentration are 1–10 nM, 
it mediates the stress response involved in the physiological and adaptive processes called 
oxidative eustress; higher concentrations (more than 100 nM) are responsible for the so-
called oxidative distress, in which the evoked inflammatory response leads to cell damage 
[7,8]. Considering the endogenous antioxidant system involved in H2O2 production and 
removal, a parallel dual role, physiological and pathological, can also be recognized for 
all the enzymes involved. SOD activity may therefore have a double and opposite 
meaning [9]: firstly, it is an antioxidant enzyme when its activity is coordinated with either 
the CAT, GPx or Prx/Trx enzymes, which avoid H2O2 accumulation by neutralizing it into 
H2O; secondly, SOD may act as a pro-oxidant as H2O2 can overaccumulate, leading to ROS 
overproduction and cell toxicity [7]. 

Accordingly, a bell-shaped dose-response curve describes the protective effects of 
SOD on isolated heart preparation, with low doses (up to 5 μg/mL in the perfusate) 
protecting, and high doses (50 μg/mL in the perfusate) exacerbating reoxygenation-
induced injury [10]. However, when SOD activity increases, the enhanced levels of H2O2 
trigger the upregulation of CAT [11] and/or GPx [12], with a final antioxidant balance as 
a compensatory and defense response strategy. 

SODs are also involved, at least partially, in detoxification from the oxidant and 
nitrating agent peroxynitrite (ONOO−), which is formed from the reaction between •NO 
and •O2− (Figure 1B). ONOO- rapidly forms reactive free radicals upon reaction with CO2 
[11]. SOD also prevents this detrimental event. 

On this basis, it is universally recognized that SOD is the first line of defense against 
the toxicity of •O2− because catalyzing the dismutation of two molecules of •O2− to 
hydrogen H2O2 and O2 limits the •O2− availability. Low and diminished SOD activity has 
been associated with a significant risk of oxidative stress, resulting in disease, such as 
hypertension, hypercholesterolemia, atherosclerosis, diabetes, heart failure, stroke and 

Figure 1. Superoxide dismutase enzymes. (A) Superoxide dismutases (SODs) are metalloenzymes constitutively expressed
in eukaryotes: SOD1 is a Cu, Zn-SOD and is present in the cytosol and the mitochondrial intermembrane; SOD2 is a
Mn-SOD localized in the matrix and inner membrane of mitochondria; SOD3 is a Cu, Zn-SOD expressed in the extracellular
compartment. Nevertheless, all three forms catalyze the conversion of the superoxide anion free radical (•O2

−) into
hydrogen peroxide (H2O2). (B) In detail, SOD converts the •O2

−, generated in several cellular insults/metabolism, into
H2O2 and molecular oxygen (O2). The resulting H2O2 may undergo reduction to water via catalase (CAT), glutathione
peroxidases (GPx), or thioredoxin (Trx)-dependent peroxiredoxin (Prx). Otherwise, H2O2 originates •OH via the Fenton
reaction in the presence of Fe2+. •O2

− may also react with •NO originating the oxidant and nitrating agent peroxynitrite
(ONOO−), which further contributes to oxidative-stress damage. GSH = glutathione; GSSG = glutathione disulfide;
TrxSH2 = reduced thioredoxin; TrxS2 = oxidized thioredoxin.

Accordingly, a bell-shaped dose-response curve describes the protective effects of
SOD on isolated heart preparation, with low doses (up to 5 µg/mL in the perfusate)
protecting, and high doses (50 µg/mL in the perfusate) exacerbating reoxygenation-induced
injury [10]. However, when SOD activity increases, the enhanced levels of H2O2 trigger
the upregulation of CAT [11] and/or GPx [12], with a final antioxidant balance as a
compensatory and defense response strategy.

SODs are also involved, at least partially, in detoxification from the oxidant and
nitrating agent peroxynitrite (ONOO−), which is formed from the reaction between •NO
and •O2

− (Figure 1B). ONOO- rapidly forms reactive free radicals upon reaction with
CO2 [11]. SOD also prevents this detrimental event.

On this basis, it is universally recognized that SOD is the first line of defense against
the toxicity of •O2

− because catalyzing the dismutation of two molecules of •O2
− to

hydrogen H2O2 and O2 limits the •O2
− availability. Low and diminished SOD activity

has been associated with a significant risk of oxidative stress, resulting in disease, such
as hypertension, hypercholesterolemia, atherosclerosis, diabetes, heart failure, stroke and
other cardiovascular diseases [12,13]. Therefore, it has been suggested that the antioxidant
properties of SOD supplementation are useful in a variety of pathophysiological conditions,
from protecting the immune system to the prevention of aging [14]. The consumption of
natural sources of SOD, such as cabbage, Brussels sprouts, wheatgrass, barley grass and
broccoli has been encouraged [15].
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The use of SOD as a drug may be advantageous in terms of the quantity and duration
of the pharmacological effect, compared to other antioxidants. Indeed, SOD supplemen-
tation may trigger the endogenous antioxidant machinery to neutralize a free radical
excess without being consumed upon ROS detoxification. By contrast, non-enzymatic
antioxidants, such as glutathione (GSH), are known to be depleted [16]. However, pharma-
cological treatment using exogenous SOD administration is not yet an established clinical
practice, and usually dietary supplementation is pursued. Indeed, efficacy depends on
the source of SOD. Although there is a lack of head-to-head studies, a study in rats has
demonstrated that human and bovine SODconferred higher pharmacological activity that
the rat enzyme [17].

Moreover, the treatment of human diseases with the human enzyme may not yield
beneficial effects. Bovine SOD, known as orgotein, was usually preferred. However, it
can be limited by its intramuscular administration, administration frequency (2~3 times
weekly) [9], and possible toxicity, caused by the presence of 20% impurities (albumin
and chymotrypsin are the primary contaminants), in the pharmaceutical preparation that
may result in immediate hypersensitivity reactions [18], and other side effects, including
allergy [16]. Orgotein, marketed for the treatment of a range of inflammatory diseases,
was withdrawn from European countries [18], due to allergic reactions, and limited to
veterinary use in the US.

Over time, plant-extracted SOD became the alternative. Cantaloupe-melon-(Cucumis
melo L.C.)-derived SOD, SODB, which offers the advantage of a high SOD concentration
(100 U/mg) and low contents of other antioxidants, such as CAT (10 U/mg) and GSH
(1 U/mg), is one of the most commonly used [19,20]. However, the oral bioavailability of
this form of SOD is still very low, according to the general pharmacokinetics principle of
drugs, and this is because of its high molecular weight, which affects cellular uptake [21],
and the low pH and high proteolytic activity in the digestive tract [22]. As natural SOD is an
exogenous protein, we can hypothesize that it may induce antibody formation (anti-drug
antibodies ADA). However, considerable experience with the infusion of proteins as drugs
for therapeutic purposes has indicated that there is only a marginal reduction in their effect
and no clinically demonstrated toxicity.

Thus, the use of SOD mimetics and new delivery systems to protect SOD are under
investigation [23]. SOD mimetics are intended to overcome the limits of natural SOD
enzymes. They have better pharmacokinetic properties and some pharmacodynamic
differences, with negligible antigenicity potential. Indeed, SOD mimetics have a low
molecular weight, more stability and a long-circulating half-life, guaranteeing a better
pharmacokinetic profile. Moreover, they have a different dose–response curve; natural
SOD displays a bell-shaped dose-dependent curve, while most SOD mimetics have a
dose-proportional response [24]. Finally, their mechanism of action is far beyond that of
•O2

− scavenger activity alone, as discussed below.
This paper aimed to provide an extensive review of the possible uses of SOD in differ-

ent human diseases and explore the current pitfalls in development processes to solve the
bioavailability issues. Selection was based on orgotein indications and included neurologi-
cal, cardiovascular, respiratory, gastrointestinal, renal, skin, metabolic and ocular diseases.
We are aware that cancer is a meaningful field of application for SOD. However, we stress
that oncology is far beyond our expertise and has been extensively reviewed in I. Batinic-
Haberle and coll. (2018) [25], I. Batinic-Haberle and I. Spasojevic [26], and I. Batinic-Haberle
and M. E. Tome [27]. We therefore carried out a PubMed query starting with the keywords
“SOD”, “SOD mimetics”, and “SOD supplementation” that included papers published in
the English language, between 2012 and 2020, on the potential therapeutic applications of
SOD, including detoxification strategies.

2. Mechanism of SOD Induction and Inactivation

The three isoforms of SOD show differences in their protein structures, metal co-
factor requirements, subcellular localization (Figure 1), and tissue distribution. Human
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SOD1 is an homodimer of 88 kDa that is encoded by a gene on chromosome 21q22 [28].
SOD2 is a smaller homotetramer protein of 32 kDa, encoded by a gene on chromosome
6q25.3 [29]. Finally, SOD3 is an homotetramer glycoprotein of 135 kDa encoded by a gene
on chromosome 4 [30].

Some unique transcription factors that play specific regulatory roles have been de-
scribed [31]. However, all three SOD isoforms share the presence of binding sites for
several transcription factors, such as the Nuclear Factor (NF)-κB, the specificity protein
(Sp)-1, CCAAT-Enhancer-Binding Proteins (C/EBP), and the activator proteins (AP)-1
and-2, which exert similar effects on the regulation of all three SOD genes [31–33]. A
prominent role has been recognized for nuclear factor erythroid 2-related factor 2 (Nrf2).
The first evidence of the relationship between SOD1 and Nrf2 dates back to 2005, when the
presence of the SODG93A mutation was associated with a reduction in Nrf2 mRNA [34].
Nrf2 translocates to the nucleus from the cytoplasm following binding with the Kelch-like
ECH-associated protein 1 (Keap1). Keap1 is a cysteine-rich protein that interacts with ROS
and promotes both the nuclear translocation and the ubiquitination and degradation of
Nrf2. In the nucleus, Nrf2 forms a complex with Maf (musculoaponeurotic fibrosarcoma)
proteins. It binds the antioxidant responsive elements (AREs) [35] at the sequence located
in the promoter region between −356 and −330 from the transcription start site of sod1 [36].

The Keap1/Nrf2 pathway regulates the expression of many antioxidant genes be-
sides SODs, such as those encoding for CAT, GPx, NAD(P)H-quinone oxidoreductase
1, GSH-S-transferase, Prx, ferritin and heme oxygenase-1 (HO-1) [37]. Interestingly, the
Keap1/Nrf2 pathway can be considered the effector of the SOD mimetic mechanism of
action. Indeed, SOD mimeticsalter the cysteine oxidation/protein S-glutathionylation cycle.
These compounds cause the oxidation of the thiols of the peptide cysteine of Keap1, thus
inducing Nrf2 activation and leading to SOD overexpression [27].

The Keap1/Nrf2/HO-1 axis and its link to SOD expression have been well character-
ized, and are based on the complementary function of SOD and HO-1; the first produces
H2O2 and the second catalyzes the rate-limiting step in the breakdown of heme to biliru-
bin [38], which is known to remove ROS, including •OH, singlet oxygen and •O2 [39].
Accordingly, the subsequent induction of SOD2 and HO-1 has been identified as the mech-
anism by which the Nrf2-ARE inducer tert-butylhydroquinone protects mitochondria
that are exposed to oxidative stress [40], and astrocytes that are damaged by lanthanum
chloride [41]. Moreover, Nrf2/HO-1 has been demonstrated to confer protection from
doxorubicin-induced mitochondrial damage by upregulating antioxidant genes, including
SOD2 [42]. Similarly, cobalt protoporphyrin, a potent inducer of the HO-1 protein and
activity, increased SOD3 expression in rat aorta, possibly via the activation of the mitogen-
activated protein kinase (MAPK) pathway [43]. Nrf2 is a direct downstream target of
MAPK, like ERK [44]. Accordingly, the Nrf2/ERK signaling pathway has been implicated
in the upregulation of the gene expression of HO-1 and SOD1 by fucoidan, a sulfated
polysaccharide found in edible brown algae [45]. However, in a study by M. Dell’Orco and
coll. (2016), Nrf2 does not appear to be associated with SOD1 in human neuroblastoma
SH-SY5Y cells that are exposed to H2O2 [46]. Considering the role of Keap1/Nrf2 in SOD
expression, the Nrf2 activators, or Keap1 inhibitors [47], should be included between the
SOD inducers. Among them, the peroxisome proliferator-activated receptor (PPAR)γ is
particularly attractive. Indeed, it could regulate SOD expression both directly through its
association with the PPAR responsive element of the SOD promoter region, and indirectly
inducing the expression of Nrf2, HO-1, CAT, and GPx-3 [48]. In particular, between Nrf2
and PPARγ, a positive feedback loop reinforcing the antioxidant response is established:
Nrf2 through the ARE region present on the PPARγ promoter may directly upregulate
PPARγ expression and PPARγ may in turn regulate the Nrf2 interacting with a PPAR
responsive element [49].

Another interesting axis in SOD transcriptional regulation can be found in the phos-
phoinositide 3-kinase (PI3K)/AKT/NF-κB/transcription factors of the forkhead box, class
O (FOXO) axis, which has been reported to exert antioxidant effects by increasing SOD



Molecules 2021, 26, 1844 5 of 40

expression. Indeed, the PI3K/Akt pathway induces SOD1, SOD2 and SOD3 expres-
sion [50–52], as well as HO-1 [53,54]. The activation of the PI3K/AKT axis inversely
regulates the distribution of NF-κB and FOXO transcription factors; FOXO factors are
phosphorylated and displaced from the nucleus to the cytoplasm, while NF-κB translocates
to the nucleus, activating antioxidant genes, including SODs [50]. Again, PPARγ can
participate: it may increase FOXO activity through the activation of AKT and NF-κB tran-
srepression [55]. Interestingly, the role of the NF-κB-SOD axis in homeostasis through the
NF-κB p65 subunit translocation is well documented and has been implicated, for instance,
in the endotoxin-induced stress [56]. However, a vicious loop can be identified between
SOD and NF-κB: the IKKβ/NF-κB signaling pathway regulates SOD2 expression through
p53, and p53 transcription is in turn dysregulated by SOD2, causing the upregulation of
IKKβ. This loop may be detrimental to the progression of tumorigenesis. Indeed, SOD2 ex-
pression was positively associated with pathologic tumor stages and negatively correlated
with overall survival in nasopharyngeal carcinoma [57] or lung adenocarcinoma [58].

In addition to transcriptional regulation, epigenetic and post-transcriptional regula-
tion can also contribute. Epigenetic regulation is primarily associated with SOD expression
and activity in cancer. The most documented epigenetic regulation involves the promoter
methylation of the SOD2 gene [59]. It has recently been demonstrated that the deacetylation
of histones at its promoter reduces sod3 expression in old lung fibroblasts. Accordingly,
histone deacetylase inhibitors were able to preserve sod3 expression [60]. On the other
hand, in THP-1, histone H3 and H4 acetylation regulates sod3 expression during differ-
entiation, while DNA methylation is responsible for sod3 silencing in human peripheral
blood mononuclear cells (PBMCs) [61]. Post-transcriptional regulation is responsible for
the rapid modulation of SOD expression and includes: (i) phosphorylation; (ii) amino
acid modification, such as lysine acylation (including sumoylation, ubiquitination and
glycation); (iii) redox modifications, such as oxidation, glutathionylation and cysteinylation;
(iv) s-acylation; and (v) nitration [62–64].

Apart from expression regulation, SOD activity also depends on the presence of the as-
sociated metals. These mechanisms have been extensively reviewed by Culotta et al. (2007),
Fukai and Fukai (2011), and Hatori and Lutsenko (2016). Briefly, while SOD1 and SOD3
exist as apoenzymes that are activated post-transcriptionally by copper insertion (without
new protein synthesis), metal insertion for SOD2 cannot occur post-translationally. Indeed,
manganese insertion only occurs in newly synthesized SOD2, when the pre-sequence
for mitochondrial targeting at the N-terminus is still present. Subsequently, manganese
trafficking to SOD2 is driven by the Smf2p manganese transporter and Mtm1p, which are
members of the mitochondrial carrier family of transporters. SOD2 is therefore imported
into mitochondria and cleaved into the mature form. Conversely, SOD1 activation occurs
post-transcriptionally via a 4-step process that involves the copper chaperone for SOD1
(CCS). CCS docks with and transfers copper to the disulfide-reduced SOD1. The disul-
fide is essential for both structural stabilization and functional activation, allowing the
dimeric state to form [65,66]. Finally, SOD3 is loaded with copper via a copper chaperone
antioxidant-1 (Atox1) pathway [67–69]. However, Atox1 is not sufficient, and the Menkes
ATPase, ATP7A, is required to deliver the copper to SOD3 at the trans-Golgi network [66].
The activation of SOD leads to the conversion of •O2

- to H2O2 and O2, as described in the
above section and depicted in Figure 1. However, SOD1 can also act as a transcription
factor. Indeed, H2O2 induces SOD1 translocation to the nucleus following association with
the Mec1/ATM effector Dun1/Cds1 kinase and phosphorylation. Once in the nucleus,
SOD1 regulates the expression of various oxidative stress-responsive genes that are known
to confer resistance to oxidative stress, DNA damage repair and replication stress relief [70].
Moreover, upon binding to DNA, SOD1 regulates the ROS-responsive expression of func-
tional genes, including oncogenes and amyotrophic lateral sclerosis-linked genes [71].
Finally, SOD1 has also been reported to activate the muscarinic M1 receptor, thus inducing
AKT and ERK phosphorylation in neuroblastoma SK-N-BE cells [72].
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As SOD activity depends on the associated metals, it is reasonable to assume that
any perturbation of the enzyme structure that causes their release is responsible for the
inactivation of the enzyme. Accordingly, using a zebrafish model, it has been demonstrated
that lead forms a complex with SOD1 via an electrostatic effect. Consequently, the metal
enters the active channel of SOD, hindering substrate access. Therefore, copper and zinc
are released from the SOD1 active site [73]. Moreover, it is well known that the reaction
of peroxynitrite with the metal center of the enzyme is responsible for SOD inactivation.
In particular, both SOD1 and SOD2 react directly with peroxynitrite; SOD1 is subjected to
histidinyl radical formation [74], and SOD2 is subjected to tyrosine nitration [75].

3. The Role of SOD: What We Have Learned from Knock-Out (KO) Mice

SOD’s role in oxidative stress defense means that its role in other pathophysiological
contexts is inferable. Accordingly, the use of SOD supplements or SOD mimetics in several
potential therapeutic applications is currently under investigation. Each of these possible
therapeutic indications for SOD is mainly based on the use of transgenic mice. Indeed, mice
that lack either SOD1, SOD2 or SOD3 have helped us to understand the relative role of each
isoform in fertility, mortality/survival and the development of specific diseases. The very
first difference between SOD1, SOD2 and SOD3 is in terms of survival. Homozygous mice
that lack SOD2 (SOD2−/−), and not SOD1 or SOD3, show a dramatic phenotype that affects
lifespan, with death occurring: (i) within the first 10 days with dilated cardiomyopathy,
the accumulation of lipids in the liver and skeletal muscle, and metabolic acidosis [76]; or
(ii) within the first 3 weeks with severe anemia, the degeneration of neurons in the basal
ganglia and brainstem, and progressive motor disturbances, characterized by weakness,
rapid fatigue and circling behavior [77]. Accordingly, the homozygous missense variant,
c.542G > T, p.(Gly181Val), in SOD2 may lead to toxic increases in the levels of damaging
oxygen radicals in the neonatal heart, which can result in rapidly developing heart failure
and death [78]. As SOD2−/− die in 2~3 weeks [76,77], heterozygous SOD2 (SOD2+/−) mice
and alternatively, conditional KO mice, in which deletion involves individual tissues, have
been generated [79]. Thanks to these experimental models, it is clear that the contribution
of SOD to homeostasis is tissue-specific: heart/muscle-specific SOD2 KO shows a reduced
lifespan, with several electrophysiological abnormalities occurring [80]; T cell-specific SOD2
KO demonstrates a compensatory phenotype, in which other mechanisms may compensate
for any loss of function; while liver-specific SOD2 KO does not show a phenotype, with
the tissue appearing unaffected by SOD2 loss [79]. Platelet content and function were
not affected by SOD2+/− phenotype, with no difference being observed between KO and
wild-type mice in the tail-bleeding or arterial-thrombosis indices. Similar results have also
been obtained when comparing these two phenotypes for outcomes in both sepsis and
autoimmune inflammatory arthritis models [81].

Interestingly, postnatal motor neuron SOD2 KO shows no signs of oxidative damage
up to 1 year after birth. These data suggest that postnatal motor neurons are resistant to
oxidative-stress damage, although the disorganization of the distal nerve axon occurs [82].
Mammary-gland development is also not affected by SOD deletion; postnatal mammary
gland SOD2 KO mice show no changes in pre- and post-pregnancy developmental struc-
tures and mammary-gland function [83].

In SOD2+/− animals, enzymatic activity is decreased by 30–80% depending on the
specific tissue [84]. This defect has been correlated with an increase in oxidative damage to
mitochondria, but not to cytosolic proteins or nuclear DNA [85]. At 6 months, SOD2+/−

mice show behavioral impairments involving learning and memory processes, and alter-
ations in glutamatergic synaptic transmission with a decrease in the n-methyl-D-aspartate
(NMDA) receptor [86]. A clear phenotype has also been recognized in SOD1 KO mice.
In this case, homozygous KO females have reduced fertility due to an increase in em-
bryonic lethality, although normal ovulation and conception were observed [87]. These
mice are healthy, although they have reduced survival time (mean lifespans of 20.8 ± 0.7
compared to 29.8 ± 2.1 months for the wild-type counterpart), with a higher incidence
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(79% of KO animals) of hepatocellular carcinoma development [88]. SOD1 has long been
linked to age-associated diseases because SOD1 deletion leads to different phenotypes that
mimic accelerated aging [89]. For instance, SOD1−/− senescent mice show the decreased
production of both stimulated and non-stimulated tears due to several alterations in the
lacrimal gland, including: the atrophy of acinar units; fibrosis; infiltration of T-cells, mono-
cytes and neutrophils; increases in apoptotic cells; and signs of epithelial-mesenchymal
transition [90]. At 1 year of age, SOD−/− mice develop cortical lens opacity, and within
1 more year, they showed reduced GSH content at the lens level [91]. Accordingly, a study
of 415 cataract patients has demonstrated an increased risk of cataracts in patients that
are polymorphic for SOD1 due to a reduced capacity to scavenge superoxide radicals in
lenses [92]. Moreover, serum SOD activity has been observed to be significantly reduced
in 60 patients with newly diagnosed senile non-pathologic cataracts [93]. In contrast, the
SOD2+/− phenotype was not related to age-related cataract development [94], suggesting
that SOD1 may have a more detrimental effect on ageing. SOD1 deletion is also associated
with cochlear degeneration over time; null mice developed early age-related hearing loss
with spiral ganglion cell degeneration at 7–9 months of age [95]. Notably, SOD2 has also
been found to be involved in hearing loss. Indeed, SOD2+/− mice have shown significant
outer hair cell damage in cochlear turns, and their response to post-noise exposure (120 dB
at 4 Hz for 4 h) at 7 and 14 days was worse than that of their wild-type counterparts [96].

Notably, SOD1 KO mice display other features of aging apart from age-related hearing
loss, and these include frailty, which is a clinical syndrome highly prevalent in old age
that presents at least three of the following criteria: unintentional weight loss; exhaustion;
weakness: slow walking speed; and low physical activity [97]. SOD1−/− mice exhibit
weight loss, weakness, low physical activity and exhaustion, while inflammation and
sarcopenia develop in parallel [98]. Again, a similar effect is evoked by SOD2 deletion, with
SOD2+/- mice showing a reduction in work-to-exhaustion that is correlated with whole-
body oxygen consumption [99]. A loss of muscle mass and function is one of the most
prominent aging phenotypes shown by SOD1−/− mice [100]. The importance of SOD1 in
motor neuron degeneration is also confirmed by the demonstrated association between
SOD1 defects in skeletal muscle and amyotrophic lateral sclerosis (ALS). SOD1 mutation,
leading to reduced enzyme activity, is one of the key pathological events in ALS [101],
and mice that express the SODG93A mutation are the most commonly used model for this
disease [102]. Other mutations of SOD1 have also been recognized in ALS, although their
significance in development and penetrance differs. For instance, the SOD1 G93D mutation
caused a slowly developing lower motor neuron disease with reduced penetrance [103]. On
the other hand, the mutation c.271G > A, which leads to the substitution of asparagine with
aspartate at position 90, seems to be associated with the rapid progression and a prominent
pain syndrome [104]. Moreover, A. Canosa and coll. (2018) have reported the presence of a
heterozygous novel frameshift SOD1 mutation (p.Ser108 LeufsTer15), which was predicted
to cause premature protein truncation in a sporadic ALS patient. This mutation could have
two different consequences: (i) less active SOD1; and (ii) a less charged protein with a
higher propensity to aggregate. In both cases, the result would be an increase in oxidative
damage [105].

Finally, SOD1−/− mice are more susceptible to paraquat toxicity [87], and motor
neuron loss after axonal injury [106].

By contrast, mice that lack SOD3 have normal development and remain healthy until at
least 14 months of age without the compensatory induction of other SOD isoenzymes [107].
However, their survival time was significantly affected by exposure to >99% oxygen as
severe lung edema developed [107]. These data, combined with the results of gene-array
screening in SOD3−/− mice [108], suggest that compensatory mechanisms occur, including
the unbalance of the expression of genes involved in cell signaling, inflammation and gene
transcription (37 are upregulated and nine downregulated) [108]. Like SOD1, SOD3 has
also been implicated in some age-related dysfunctions. For instance, both SOD-3 and SOD1
appear to have functions in preserving corneal endothelial integrity in aging [109]. Indeed,
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SOD3−/− mice have shown the early (starting from month 2) spontaneous age-related
loss of endothelial cells in the cornea and increased susceptibility to acute inflammatory
endothelial damage [110]. By comparison, the corneal endothelial cells in SOD1/3−/−

mice have shown more irregular morphology at an older age, suggesting they have a more
vulnerable corneal endothelium [109].

SOD3−/− mice of 22 months have displayed reduced transforming growth factor beta
(TGF-β) levels and, consequently, a lower differentiation of fibroblasts into myofibrob-
lasts, which results in delayed wound closure, reduced neovascularization and increased
neutrophil recruitment. These results suggest that reduced levels of cutaneous SOD3 in
aged mice may contribute to the impaired wound healing response in aged skin [111]. By
contrast, only a slight increase in inflammatory variables and fibrosis were found in lungs
from 2-year-old SOD3−/− mice, compared to their wild-type counterparts [112]. However,
the response of SOD3−/− mice to ovalbumin (OVA) challenge resulted in severe allergic
asthma [113]. Interestingly, SOD3−/− mice seem to be more prone to developing injury at
the inner retina and may be more susceptible to vitreoretinal diseases, including diabetic
vitreoretinopathy. Indeed, SOD3−/− mice present higher oxidative stress markers at the
vitreoretinal interface and signaling abnormalities within the inner retina [114]. SOD3−/−

mice have recently been used to study the contribution of oxidative stress to proteinuric
kidney diseases. A study by R.J. Tan and coll. (2015) has demonstrated that SOD3−/−

mice are more susceptible to renal injury in an Adriamycin-(ADR)-induced nephropathy
model [115].

4. SOD as a Detoxification Strategy

Oxidative stress is the most common mechanism of xenobiotic toxicity. For instance,
heavy metals, such as mercury, arsenic and lead, induce oxidative stress by promoting
the production of ROS and reactive nitrogen species (RNS). These metals may replace the
transition metals, such as Zn and Cu, which are required for SOD catalytic function, and
inhibit their function [13]. Various chemicals can affect the balance between pro-oxidant
challenge and antioxidant defenses by enhancing ROS and/or RNS formation and by
depressing their removal [116].

Due to its role in limiting the formation of ROS and RNS and the consequent oxidative-
stress damage, the availability of SOD as an antidote for xenobiotic toxicity would be a
therapeutic advantage.

As SOD2+/− mice have been used as an experimental model to investigate of the
role of mitochondrial toxicity in troglitazone-induced liver injury [117], SOD2 has been
postulated to be a key enzyme against the hepatotoxicity of some drugs and chemicals [118].
For instance, SOD2 is inactivated by protein nitration during paracetamol hepatotoxic-
ity [119]. Furthermore, partial SOD2 deficiency and inactivation have been associated with
increased liver injury [120–122]. It has therefore been hypothesized that increasing SOD2
expression/activity might have a beneficial effect. This strategy has been pursued using
nitroxide mito-tempo, which is a compound that combines piperidine nitroxide (tempo
or tempol) with triphenylphosphonium (TPP+), which is a membrane-permeant cation
that accumulates within mitochondria thanks to membrane potential [123], tempol [124],
and the Mn pyridoxyl ethyldiamine derivative (MnPLED) mangafodipir (MnDPDP) [125].
Mito-tempo and tempol are both nitroxides and their classification as SOD mimetics is
controversial [24,126].

The promising results obtained in C57 BL/6 J mice with paracetamol overload
(300 mg/kg i.p.) [127], and in BALB/c mice with paracetamol (1000 mg/kg i.p. or
500 mg/kg p.o.)-induced acute liver failure [125], have led to a successful evaluation of the
safety and tolerability of another MnPLED SOD-mimetic, calmangafodipir [Ca4Mn(DPDP)5],
in combination with n-acetylcysteine (the gold standard antidote for paracetamol toxicity)
for paracetamol overdose in humans [128]. Thus far, calmangafodipir has been reported
among the established and emerging therapies against paracetamol hepatotoxicity in a
recent review [129].
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Due to its beneficial effects on hepatotoxicity, SOD2 has also been proposed as an
antidote against carbon tetrachloride (CCl4) intoxication. The CCl4 metabolic process in the
liver gives rise to two active microsomal radicals or peroxides (CCl3 or CCl3OO) [130,131],
via the cytochrome P450 pathway, thus causing lipid peroxidation and undermining the
integrity of liver-cell membranes [132]. The administration of an SOD2 mimic (SOD2m)
for 7 days has prevented the oxidative stress and inflammatory responses induced in
the liver, by the exposure of mice to 0.05% CCl4, within 24 h. Indeed, a SOD2m-treated
group showed a significant decrease in two crucial liver-injury biomarkers: aspartate
aminotransferase (AST); and alanine aminotransferase (ALT). Accordingly, a reduction in
histologically evaluated liver damage was observed. Moreover, the levels of several pro-
inflammatory mediators, including prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2),
interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), were reduced [133].

The correlation between SOD and alcohol intoxication is now well established. Ho-
mozygous mutations in the SOD2 gene have been associated with a major risk of developing
severe alcoholic liver disease in humans [134]. Interestingly, a study on a Han-Chinese
population (80 patients with alcoholic cirrhosis, 80 patients with alcoholic non-cirrhosis,
80 with viral hepatitis B-related cirrhosis and 165 healthy controls) has demonstrated that
patients with alcoholic cirrhosis had a higher frequency of the SOD2 C/C and C/T genotypes
than the other groups, suggesting that the SOD2 47T > C genetic variant is a risk factor for
alcoholic cirrhosis susceptibility [135]. On the other hand, moderate ethanol consumption
(7–9 g/kg body wt/day) in SOD1−/− mice promotes the onset and progression of alco-
holic liver injury via a decrease in SOD2 and an increase in peroxynitrite contents, protein
carbonyls and lipid peroxidation [136]. Accordingly, the adenovirus-mediated expression
of SOD1 has been observed to be effective in reducing early alcohol-induced liver injury
in rats [137]. More recently, SOD1 encapsulated in poly-L-lysine (PLL50)-polyethylene
glycol (PEG) and then cross-linked with a reducible cross-linker (nano-SOD) reduced the
steatohepatitis induced by ethanol in mice that were fed an ethanol liquid diet (5% of
ethanol) for 4 weeks [138].

Several studies have associated a downregulation in SOD activity, and the conse-
quent oxidative stress, with the progression of chronic skin damage induced by UV-
irradiation [139]. SOD1 has been shown to exert a protective effect on human keratinocytes
exposed to UVB [140]. Transfecting human keratinocytes with the SOD1 expression vector
was effective in reducing UVB-induced apoptosis [141]. Moreover, a study on B16F10
murine melanoma cells has demonstrated that SOD1 (1–1000 ng/mL) inhibits melanin
production within 24 h in a dose-dependent manner [142]. Accordingly, the topical admin-
istration of 1000 ng/mL SOD1 to HRM-2 melanin-possessing hairless mice before UVB
190 mJ/cm2 exposure decreased UVB-induced melanogenesis by blocking the aggravation
of melanogenesis and thus potentially preventing melanoma development [142]. This
evidence indicates the possible use of the exogenous supplementation or endogenous
up-regulation of SOD to counteract UV-radiation-induced oxidative stress. An in vitro
study demonstrated that the SOD mimetic belonging to the ethylenediamine chloride com-
plex (EUK) family, EUK-134, increases human keratinocyte survival, after UVB-induced
oxidative stress, via the indirect inhibition of the MAPK pathways [143]. Accordingly, the
30 U SOD/mL of the dried melon juice concentrate SODB, administered 24 h before UV
exposure, has been seen to reduce keratinocyte apoptosis [139]. Moreover, the topical appli-
cation of SOD, linked with the human immunodeficiency virus type 1 (HIV) transactivator
of transcription (TAT) domain (TAT-SOD) at 300 U/cm2, 1 h before UVB irradiation, was
effective in preventing UVB-induced erythema formation and blood-flow rise in Fitzpatrick
skin type II and III subjects [144].

Similarly, it has been suggested that SOD2 is important in preventing the damage
caused by UV radiation-induced oxidative stress, which can lead to numerous ocular
pathologies [145]. Interestingly, an ophthalmic carbopol 934-based gel formulation, contain-
ing recombinant SOD2 (rMnSOD) as an active ingredient, reduced the number of microvilli
damaged both in conjunctiva and cornea epithelial cells from rabbit eyes exposed to UV
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radiation [146]. The protective role of SOD in ocular damage may also have therapeutic
implications in methanol intoxication. Visual symptoms usually occur within 12–36 h after
ingestion and can be ascribed to the inhibition of cytochrome oxidase activity and the
prevention of mitochondrial oxygen production in the optic nerve by formic acid, a toxic
methanol metabolite [147]. Indeed, HCO2 can easily pass through the ganglion cell wall
due to methanol-induced acidosis, leading to formate-oxidation reactions in the mitochon-
dria and lysosome [148]. The optic nerve, retina and basal ganglia are the main tissues
that are damaged by the increased oxidative-stress response [149]. The administration of
tempol 2 h after methanol ingestion prevented the structural integrity of retinal ganglion
cells in methanol-intoxicated rats [148]. Therefore, it is possible to hypothesize that SOD
can be used as an antioxidant therapy for methanol-induced toxic optic neuropathy.

The ionizing radiation used in radiotherapy is known to trigger both ROS generation
and the cytotoxic response, resulting in several different side effects, including fibrosis.
When a deficiency in antioxidant enzymes is present, an increase in radio-sensitivity oc-
curs [150]. The first observation of the beneficial effects of antioxidant therapy in preventing
these events arrived in 1983, when a liposomal formulation of SOD was administered to
two patients treated with high-dose pelvic radiotherapy, to reduce the fibrotic and necrosis
response that occurred [151]. Since then, several publications have supported the role of
SOD supplementation in radioprotection. The precise mechanisms responsible for the
radioprotective effects of SOD are still unknown. Of the different possible forms of SOD,
SOD2 is currently considered to be pivotal in protecting cells during exposure to ionizing
radiation. Its importance has led to an investigation into the possible use of SOD activity in
blood cells as a predictive biomarker for the selection of individualized irradiation therapy
protocols. In an in vitro study of blood samples obtained from 32 breast-cancer patients,
the activity of SOD after irradiation depended on initial SOD levels; these were decreased
when initially high, and preserved when initially medium or low [152]. According to the
authors, it is possible to consider patients with high basal levels of SOD to be poor respon-
ders, whereas patients with low basal levels may benefit from defense against the reactive
free radicals produced after radiation. On the other hand, proton irradiation reduced SOD2
activity, while X-rays induced its overactivity [153]. This observation may be related to the
bell-shaped dose-response curve observed following SOD administration. According to
this, the optimization of concentration is essential in any application [9]. Therefore, SOD
has been proposed as a strategy to prevent radiation-induced damage to different normal
tissues. D. Leu and coll. (2017) have evaluated the effect of a lipophilic Mn porphyrin
(MnP)-based SOD mimic, MnTnBuOE-2-PyP5+ (BMX-001), administered subcutaneously
for one week before cranial irradiation and continued for one week afterward, in the radio-
protection of hippocampal neurogenesis in a mouse model [154], and obtained promising
results. Accordingly, MnTnHex-2-PyP5+, a similar SOD mimetic compound [155], delayed
the onset of radiation-induced lung lesions, reduced respiratory-rate elevation and lessened
the pathologic increases in lung weight in a model of radiation-induced lung injury in a
non-human primate [156]. More recently, the MnP SOD mimetic AEOL 10150, also known
as MnTDE-2-ImP5+, showed promising results in a whole thoracic lung irradiation model
in nonhuman primates [157–159].

Moreover, the subcutaneous administration of bovine SOD (15 mg/kg) ameliorates
radiation-induced lung injury in female rats by suppressing reactive oxygen species/reactive
nitrogen species and ROS/RNS-dependent tissue damage [160]. Moreover, SOD3 adminis-
tration has been tested in the treatment of radiation-induced pulmonary fibrosis. SOD3 has
been recognized to be the main SOD form that is expressed in the lung, and is bound to the
extracellular matrix [161]. The use of an association product that combines mesenchymal
stromal cells (MSCs) with SOD3 was recognized as a promising strategy to counteract
fibrotic processes: MSCs have already been reported to be effective in the early stages [162],
but detrimental in the late stages [163] of pulmonary fibrosis, while SOD3 overexpression
in the lung was recognized as being protective against the development of fibrosis [164].
The injection, 2 h post-irradiation, of SOD3-overexpressing MSC into mice that had been
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exposed to Cobalt-60 (20 Gy) was able to reduce collagen deposition, inhibit myofibroblast
proliferation and reduce inflammatory cell infiltration,and consequently had an anti-fibrotic
effect by preventing oxidative stress [165].

SOD had a generally beneficial effect on fibrotic response in a range of experimen-
tal settings. Melon-derived SOD has been administered in a gliadin oral formulation at
10,000 U/kg/day for 8 days to mice exposed to 25 Gy, 6 months before SOD treatment, and
reduced the mean dermal thickness, which is predictive of radiation-induced fibrosis [166].
The same SOD formulation effectively reduced capsular fibrosis around silicone after im-
plant surgery in an experimental model resembling breast-cancer treatment in rats [167].
However, the study failed to demonstrate that there was any beneficial effect in preventing
or reducing radiation-induced fibrosis. These results are apparently in conflict with other
previous studies that have had clear positive outcomes. However, the lower dose of SOD
supplementation (500 mg/day for 3 weeks in the study [167] vs. 10,000 U/kg/day in the
study [166]) and the use of different subcutaneously injected formulations [160], instead
of oral administration, may account for these differences. The overall evidence for the
use of SOD as a protective treatment in post-radiation fibrosis has led to at least two
recently published clinical studies. However, the results obtained were not so comforting.
The prospective study by K.C. Landeen and coll. (2018) [168] failed to demonstrate the
effectiveness of topical SOD (280 U/g) at providing relief from the fibrosis of the head
and neck area induced by radiation therapy in patients with a history of squamous cell
carcinoma of the head and neck that had been treated with radiation. The study involved
68 adult patients, mostly males, and 86% had received radiation treatment at least 6 months
before the initiation of the study. The improvement in the fibrosis score at 3 months was
comparable in the SOD and placebo groups, suggesting that SOD had a marginal effect,
compared to active physical therapy, in the post-treatment of neck fibrosis in patients
with head and neck cancer [168]. Accordingly, the genetic association between SOD2 gene
variations and radiation-induced soft-tissue toxicity has been reported in only one, mono-
centric, small-sample-size study [169]. On the other hand, a Phase 1b/2a study by C.M.
Anderson and coll. (2018) [170] provided promising results regarding the effectiveness
and safety of a cyclic polyamine SOD mimetic, avasopasem Mn or GC4419 (previously
known as M40419, the enantiomer of M40403) at reducing the severe oral-mucositis that is
induced by radiation-concurrent cisplatin in oral-cavity and oropharyngeal cancer. Patients
(n = 46) with oral-cavity or oropharyngeal cancer, stages III–IVb, received fractionation
intensity-modulated radiation therapy (once daily, Monday–Friday, at 2.0 to 2.2 Gy/d, to a
cumulative tumor dose of between 60 and 72 Gy) with concurrent cisplatin (80–100 mg/m2

every 3 weeks or 30–40 mg/m2 weekly). GC4419 doses of 30 and 90 mg/day, administered
throughout the chemoradiotherapy period, were the most effective and showed no particu-
lar safety concerns. These doses were therefore selected for the Phase 2b extension of the
study [170].

5-fluorouracil is a chemotherapy agent known to cause severe mucositis and induce
intestinal damage [171]. The administration of SOD was therefore also tested in a model
of 5-fluorouracil-induced intestinal mucositis in mice. The study showed that Multi-
modified Stable Anti-Oxidant Enzymes® (MS-AOE®), an rMnSOD obtained from a mutant
high-temperature-resistant SOD strain, alleviates the mucositis caused by 5-fluorouracil,
primarily in the first 3–5 days [172].

Interestingly, oral mucositis is not the only side effect of cisplatin therapy that can be
treated with SOD. SODs have also been proposed for the treatment of cisplatin nephro-
toxicity. Indeed, cisplatin nephrotoxicity has been associated with ROS production, DNA
fragmentation and the activation of caspase enzymes, especially caspase-3 [173,174]. The
administration of tempol prevented a decline in the kidney function of rats that developed
nephrotoxicity following a single i.p. injection of cisplatin 6 mg/kg [175]. Accordingly, rats
treated with tempol showed an increase in kidney GSH content and SOD activity and a
parallel decrease in kidney lipid peroxidation and NOx production [176].
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Finally, a more recent example of SOD as a possible antidote has been proposed
by Liu Z. and coll. (2020). The authors, using both an in vitro and an in vivo approach,
demonstrated that bupivacaine induced the over-production of mitochondrial ROS, the
activation of C-Jun n-terminal kinase (JNK), thus leading to SOD2 upregulation. On the
other side, the SH-SY5Y cells transfected with SOD2 siRNA showed a higher susceptibility
to bupivacaine, as demonstrated by the cell apoptosis increase. The SOD2 deletion induced
mitochondrial ROS, malondialdehyde, and 8-hydroxydeoxyguanosine over-production,
with a parallel decrease in the mitochondrial membrane potential. All these events were
prevented by mito-tempo [177].

A summary of the proposed applications of SOD as a detoxification strategy, as
discussed above, is provided in Table 1.

Table 1. Possible applications of SODs as a detoxification strategy.

Insult Treatment Tested Reference(s)

paracetamol hepatotoxicity

mangafodipir [125]
mito-tempo [127]

tempol [124]
calmangafodipir [128] *, [129]

carbon tetrachloride intoxication SOD2m [133]

alcohol intoxication
SOD1 [137]

nano-SOD [138]

methanol intoxication tempol [148]

UV-induced skin damage

SODB [139]
SOD1 [140–142]

TAT-SOD [144]
EUK-134 [143]

UV-induced ocular pathologies rMnSOD [146]

radiotherapy-induced cytotoxic response

gliadin SOD [166,167]
SOD [160], [168] *

SOD3 [165]
GC4419 [170] *

MnTnBuOE-2-PyP5+ [154]
MnTDE-2-ImP5+ [157–159]

MnTnHex-2-PyP5+ [155,156]
SOD3-overexpressing MSCs [164]

cisplatin-induced oral mucositis GC4419 [170] *

cisplatin-induced nephrotoxicity tempol [175]

5-fluorouracil-induced intestinal mucositis MS-AOE® [172]

Bupivacaine-induced neurotoxicity mito-tempo [177]

MS-AOE® = Multi-modified Stable Anti-Oxidant Enzymes®. SODB = Cucumis melo L.C. derived SOD, nano-
SOD = SOD1 encapsulated in poly-L-lysine (PLL50)-polyethylene glycol (PEG), cross-linked with a reducible
cross-linker, TAT = human immunodeficiency virus type 1 (HIV) transactivator of transcription, SOD2m = SOD2
mimetic, MSC = mesenchymal stromal cells, * clinical study.

5. SOD as a Pharmacological Agent

The imbalance between oxidative-stress mediators and protective pathways, including
SOD, has been recognized as a detrimental event in many pathophysiological disorders.
This review highlights the most investigated applications of SOD as a therapeutic agent
from 2012 to 2020, excluding the field of oncology (Table 2). Despite their differences in
etiopathogenesis, oxidative stress has been recognized as a promoter of tissue damage. It
can be argued that the generic antioxidant effects of SOD supplementation are beneficial in
all of these conditions, from hypoxic damage and cardiovascular diseases to neurodegener-
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ative disorders (Parkinson’s disease, Alzheimer’s disease, ALS), and metabolic diseases,
including diabetes, its complications and obesity (Table 2).

Table 2. Potential SOD applications tested in animal models of human disease and clinical trials
between 2012 and 2020.

Application SOD Formulation References

neurological diseases

SODB [178] *,
[179] *

SOD1 [180]
SOD [181,182]

SOD-loaded porous polymersome [183]
EUK-207 [184,185]

MnTM-4-PyP5+ [186]
tempol [187,188]

cardiovascular diseases

SODB [20,189]
nano-SOD [190,191]
TAT-SOD [192]

MnTDE-2-ImP5+ [193]
tempol [194]

SOD3-overexpressing MSCs [195]

respiratory diseases

CAR-modified liposomes fasudil plus SOD [196]
PC-SOD [197]

SOD1 [198,199]
[Fe(HPClNOL)Cl2]NO3 [200]

EUK-134 [201]
MnTE-2-PyP5+ [202]

gastrointestinal diseases

O-HTCC-SOD [203]
PC-SOD [204]

SOD2 by Bacillus amyloliquefaciens strain [205]
Mn1 [206]

SOD2m [207]

skin diseases

SOD1 [208]
SOD2 [209]
SOD3 [210,211]

MnTE-2-PyP5+ [212]
SOD-loaded thermo-sensitive hydrogel-poly(N-
isopropyl-acrylamide)/poly(γ-glutamic acid) [213]

SOD3-overexpressing MSCs [214,215]
RM191A [216]

renal diseases hEC-SOD
tempol

[217,218]
[219–221],

[222]

metabolic diseases
SODB [223,224]

nano-SOD [225–227]
MnTE-2-PyP5+ [228]

ocular diseases
SOD1 [229,230]

rMnSOD [231] *
rMnSOD = recombinant SOD2, PC-SOD = lecithinized Cu, Zn-SOD, O-HTCC-= O-(2-hydroxyl)propyl-3-trimethyl
ammonium chitosan chloride, hEC-SOD = human recombinant SOD3, SODB = Cucumis melo L.C. derived
SOD, nano-SOD = SOD1 encapsulated in poly-L-lysine (PLL50)-polyethylene glycol (PEG), cross-linked with
a reducible cross-linker, TAT = human immunodeficiency virus type 1 (HIV) transactivator of transcription,
SOD2m = SOD2 mimetic, MSCs = mesenchymal stromal cells,* clinical study.

However, it must be underlined that clinical evidence for this is limited, and conse-
quently, real proof of efficacy is far from having been demonstrated. It is possible that
the lack of clinical evidence of positive effects is, at least partially, due to the so-called
“antioxidant paradox” [232], which is based on the cross-talk between oxidative stress and
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inflammation. These processes strictly influence each other and coexist in many pathologi-
cal conditions. Therefore, a vicious circle is established: ROS and reactive nitrogen species
(RNS) activate intracellular responses enhancing the expression of pro-inflammatory genes,
and consequently, a number of pro-inflammatory mediators are released, and inflammatory
cells are recruited. On the other hand, the inflammatory cells exaggerate the oxidative
stress by producing ROS and RNS [232]. Several mediators participate in this vicious
circle. Of these, a key role is played by the high-mobility group box protein 1 (HMGB1),
a protein with a dual function: as a non-histone chromatin-binding protein involved in
regulating transcription in the nucleus; and as a pro-inflammatory cytokine/chemokine
when released into the extracellular space. Its relevance in oxidative stress-inflammation
cross-talk is due to the extracellular form; ROS/RNS have been suggested to be both the
cause and consequence of HMGB1 release [233]. Interestingly, a study on 86 patients with
atrial fibrillation revealed a negative correlation between serum HMGB1 levels and SOD
activity (r = −0.491, p < 0.05) [234]. Moreover, HMGB1 translocation and release are
promoted by H2O2 in hepatocytes [235], primary human epidermal melanocytes [236],
and neonatal rat cardiomyocytes [237]. Therefore, the increase in SOD activity and the
parallel reduction in HMGB1 levels have been proposed as the mechanisms underlying the
protective effects exerted by quercetin in a rat model of sepsis [238], the amelioration of
the cisplatin-induced hepatotoxicity by the Ganoderma lucidum mushroom [239], and the
anti-inflammatory effect of the midazolam–sufentanil combination [240]. Two cross-talking
pathways are involved: Nrf2/HO-1 and the Toll-like receptor (TLR)/NF-κB axis [241].
Indeed, HMGB1 can suppress the Nrf2 pathway [236,242], as well as activating TLR-4, and
thus activates NF-κB signaling [243,244]. Considering its crucial role in SOD induction,
the Nrf2 pathway is an attractive target for different chronic diseases in which oxidative
stress is involved [245,246]. Therefore, pharmacologic modulators of Nrf2 may exert sig-
nificant antioxidant effects through indirect SOD targeting, such as by PPAR activation.
Nrf2-driven PPARγ induction was demonstrated to be protective against the pulmonary
oxidant injury [247]. The review by I. Dovinova and coll. (2020) highlights PPARγ as one
effector of SOD1, SOD2, and SOD3 expression in spontaneously hypertensive rats [248]
and how this event contributes to pioglitazone’s therapeutic effects, including the control
of blood pressure [249]. Moreover, S. Agarwal (2017) reviewed PPARs as promising thera-
peutic targets for several neurodegenerative disorders such as Parkinson’s, Alzheimer’s
and Huntington’s disease, and ALS. In all these conditions, the role of oxidative stress has
been recognized. Therefore, PPARs may have a beneficial effect even modulating SOD2
expression [250].

5.1. Ocular Diseases

In ophthalmology, oxidative stress is generically involved in ocular inflammation, and
can thus contribute to the onset and progression of several eye diseases, including cataracts,
age-related macular degeneration, uveitis, premature retinopathy, keratitis, glaucoma and
dry-eye diseases [229,251].

Accordingly, SOD1 ocular instillation has been tested in several experimental models
of uveitis, including allergic uveitis and acute corneal inflammation [230], and dry-eye
disease [229]. In particular, the relevance of SOD in this disease has been underlined
by the use of SOD1−/− mice as an experimental model to test the benefits of several
compounds on aqueous tear production [252]. Dry eye is a multifactorial age-associated
disease, characterized by discomfort, visual disturbance and tear-film instability, that has
the potential to damage the ocular surface [253]. SOD can have a dual influence on this
disease; as a protective antioxidant and a detrimental pro-oxidant. A very recent cross-
sectional study conducted on 51 patients that were affected by dry eye demonstrated a
negative correlation, of −0.373, between the levels of SOD and the dry-eye degree. This
negative correlation may be linked to a compensatory mechanism that occurs in the earliest
phases [254]. The administration of SOD, or SOD mimetics, should be combined with an
H2O2 scavenger to prevent further oxidative-stress propagation and prevent photoreceptor
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damage [255]. Interestingly, a case report, published in 2006 by L. Grumetto and coll.,
showed that the ophthalmic gel formulation of rMnSOD had protective effects in the
treatment of bilateral posterior subcapsular cataracts [231].

5.2. Gastrointestinal Diseases

Oxidative stress contributes to various gastrointestinal diseases, such as gastroduo-
denal ulcers, inflammatory bowel disease (IBDs), and gastric colorectal cancer [256]. In
particular, the rationale for SOD supplementation in gastrointestinal diseases stems from
the observation that levels of SOD are relatively low in normal gut mucosa, and usually
further reduced under inflammatory conditions [257]. For instance, enzyme levels are
lower in Crohn’s-disease [258], and ulcerative-colitis patients [204]. However, in IBD
patients, SOD levels are increased in the intestinal epithelial cells [259]. The higher SOD
in IBD has been interpreted as a means of safeguarding intestinal tissues from oxidative
damage. Accordingly, SOD levels in peripheral blood from IBD patients are increased, and
they are currently used as a biomarker of oxidative stress. Moreover, SOD supplementa-
tion has been explored as a potentially beneficial strategy for preventing several different
symptoms of bowel inflammation [260]. An experimental study by Y.H. Wang and coll.
(2016) investigated the role of an SOD2m compound in a 2,4,6-trinitrobenzene sulfonic acid
(TNBS)-induced colitis model in rats. This study demonstrated that 7-day treatment with
the SOD2m compound elicited an antioxidant response that reduced colonic macroscopic
and microscopic damage scores [207]. E. Mathieu and coll. (2017) obtained similar results
by testing the cyclic polyamine SOD2m Mn1 in a mouse model of 2,4-dinitrobenzene
sulfonic acid (DNBS)-induced colitis; Mn1 (4 mM/day via oral gavage for 7 days) slightly
improved the macroscopic score of colitis [206].

Consistent positive effects have also been observed upon using a lecithinized Cu, Zn-
SOD (PC-SOD) [204], a O-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride
(O-HTCC) conjugated Cu, Zn-SOD (O-HTCC-SOD) [203], and a SOD2 that was recreated by
a mutant high-SOD-producing Bacillus amyloliquefaciens strain [205], in a model of dextran
sodium (DSS)-induced colitis in mice.

Both these experimental models of colitis, TNBS and DSS, cause severe inflammation
with shortened, thickened and erythematous colons, as well as activating NF-κB and
inducing the expression of TLR-4 and pro-inflammatory cytokines, such as IL-1β, IL-6
and TNF-α [261]. Therefore, we can argue that similar responses are activated regardless
of the SOD form administered (Mn-SOD or Cu, Zn-SOD), and a reduction in the colonic
inflammatory response is observed thanks to the downregulation of the TLR4/NF-κB
signaling pathways [207].

5.3. Renal Diseases

SOD administration was promising when tested on the renal oxidative-stress response
that occurs in chronic kidney disease (CKD), including diabetic nephropathy. In particular,
a study by W. Ding and coll. (2015) has demonstrated the ability of tempol to improve renal
function in a murine model of CKD that was surgically induced via 5/6 nephrectomy [219].
These data on tempol efficacy in CKD are consistent with those that demonstrate the
benefits of tempol in cisplatin-induced nephrotoxicity [175]. Again, the SOD strategy was
able to influence the pro-inflammatory response by downregulating the NF-κB signal-
ing pathways. Moreover, a parallel downregulation of the pro-fibrotic response that is
triggered by the TGF-ß/Smad-3 pathway was observed in the kidney [219]. Accordingly,
administering tempol (1.5 mM/kg/day subcutaneously for 4 weeks) to diabetic rats has
been observed to improve diabetes-induced glomerular injury, tubulointerstitial fibrosis
and pro-inflammatory cytokine production [220]. Finally, tempol (1 mmol/L in drinking
water for 5 weeks) prevented renal dysfunction in two-kidney, one-clip hypertensive rats.
In particular, tempol prevented the development of hypertension, increased the plasma
levels of urea, creatinine, and 8-isoprostane, preserved glomeruli number and kidney
volume and prevented collagen deposition [221]. Consistent data have been obtained
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using spontaneously hypertensive rats in which tempol (1 mmol/L in drinking water for
8 weeks) increased SOD and nitric oxide synthases (NOS) activity in the kidney with a
parallel reduction in NADPH activity and an additive effect to that of exercise (treadmill
running for 20 m/min, 60 min/day, and 6 times/week) [222].

The anti-fibrotic effect exerted by tempol on the kidney was also exerted by human
recombinant SOD3 (hEC-SOD) when chronically administered to diabetic rats [217]. hEC-
SOD has therefore been proposed as a possible therapeutic agent to protect the progression
of diabetic nephropathy in both Type 1 [217], and Type 2 [218], diabetes. These data also
highlight the link between oxidative stress and the damage correlated with disturbed
glucose homeostasis.

5.4. Metabolic Diseases

It is well known that SOD modulates metabolism; superoxide is generated from the
metabolic processes that produce ATP from glucose and free fatty acids (FFAs), and SOD1
transgenic mice (G86R murine SOD1 mutation), which exhibit a gain-of-function mutation,
are characterized by skeletal muscle hyper-metabolism, and a deficit in metabolism [262].
On the other hand, SOD1−/− mice have shown worsened glucose homeostasis [263]. These
data are consistent with the potential use of SOD as a metabolic regulator in a variety
of diseases that are characterized by metabolic dysfunction, from insulin resistance to
FFA accumulation and obesity. Obesity, in particular, is a strong independent predictor
of systemic oxidative stress, as persistent obesity can deplete the source of the antiox-
idant [264]. Targeting SOD to improve their activity has been explored. In a high-fat
diet model (20% protein, 35% carbohydrates and 45% fat, divided into 31.59% saturated,
35.51% monounsaturated and 32.91% polyunsaturated fatty acids for 8 weeks), obese mice
were demonstrated to benefit from SOD supplementation with nano-SOD (1000 U/kg
i.p. once every two days for 15 days). In particular, SOD administration reduced the
levels of serum triglycerides [225]. The same formulation reduced the macrophage and
inflammatory markers in visceral adipose tissue and the originating stromal cells [226].
These results were confirmed and strengthened by the same group in a more recent study,
in which a combination of nonalcoholic steatohepatitis and alcohol-associated liver disease
was experimentally obtained by feeding them a high-fat diet (45% fat calories diet) for
10 weeks before the chronic administration of ethanol (5% for 4 weeks). The treatment with
nano-SOD (1000 U/kg i.p. once every two days for 15 days) was effective in attenuating
the liver injury, improving adipose tissue lipid storage and reducing hepatic CYP2E1 [227].

Similarly, the MnP SOD mimetic, MnTE-2-PyP5+ (BMX-010, AEOL10113, 5 mg/kg
subcutaneously every 3 days), has been shown to improve hepatic steatosis, the biomarkers
of liver dysfunction, insulin sensitivity and glucose tolerance in a model of Type 2 diabetes
that was induced by a high-fat diet (60% kcal fat for 12 weeks) [228]. Another study has
made use of Golden Syrian hamsters that were fed a pro-obesity diet consisting of an excess
of nine types of palatable industrially processed foods; highly fatty, sugary and salty, to
induce obesity, insulin resistance and oxidative stress. In this model, 1-month SODB oral
supplementation (10 U/day) decreased adipose tissue weight, oxidative stress and insulin
resistance [223]. Interestingly, the same formulation prevented the effects of oxidative stress
in another hamster model of obesity and insulin resistance that was induced by a high-
fat diet [224]. The mechanism(s) underlying the metabolic role of SOD supplementation
converge on transcriptional regulation and include: (i) an increase in SOD, GPx and CAT
expression [223]; (ii) a reduction in the expression of genes that are involved in fatty-acid
synthesis, as mediated by 5’ adenosine monophosphate-activated protein kinase (AMPK)
signaling [225]; the oxidation of the NF-κB p50 subunit, thus impeding DNA-binding and
transactivation [228,265].

5.5. Cardiovascular Diseases

Over time, a great deal of evidence has indicated that ROS reduction is an interesting
cardiac-protection strategy [266,267]. The meta-analysis by W.C. Dornas and coll. (2015)
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has underlined the relevance of ROS in the pathogenesis of hypertension. Based on 28 out
of 144 article studies on several different hypertensive animal models that were published
between July 1998 and December 2012, tempol treatment has been demonstrated to be
beneficial for mean arterial pressure [268]. Diminished SOD activity has been identified as
a risk factor for stroke, hypertension, hypercholesterolemia, atherosclerosis, heart failure
and other cardiovascular diseases [13], including coronary artery disease [269].

The most important link between ROS and hypertension is actuated through an-
giotensin II, the primary effector peptide of the renin-angiotensin system. Angiotensin
II has been reported to increase intracellular •O2

− levels following AT1 receptor activa-
tion on central neurons [270,271]. Accordingly, the intracerebroventricular injection of
nano-SOD attenuated blood pressure in angiotensin II-dependent hypertensive mice [190].
Interestingly, the SOD melon extract SODB showed an inhibitory effect on the angiotensin-
converting enzyme (ACE) in vitro [20]. In vivo, SODB has been observed to reduce the
left ventricular weight index, cardiomyocyte size and stimulate endogenous antioxidant
defense in a spontaneously hypertensive rat (SHR) model, in which the development and
maintenance of hypertension, and its associated cardiac alterations, are underlined by
oxidative stress. However, the reduction in blood pressure was only 5% (the comparator
enalapril evoked a 20% reduction), thus suggesting that dietary supplementation with
SODB during conventional antihypertensive therapy may be an interesting approach for
cardiac hypertrophy [189]. Possible SOD efficacy in cardiovascular remodeling has led
to SOD3 being recognized as maintaining extracellular matrix (ECM) homeostasis within
the aorta media layer. Reduced levels of SOD3 have been localized in patients affected
by ascending aortic aneurysms associated with the bicuspid aortic valve, and may thus
contribute to the occurrence of ECM modifications [195]. Regarding the possible associ-
ation between SOD3 polymorphism and cardiovascular risk, the debate is still open. A
retrospective case-control study on 1470 blood samples collected in Khon Kaen Province,
Thailand, between 2013 and 2017, from 735 control and 735 hypertensive subjects (mean
age 59.3 ± 9.0 years) matched for age and sex demonstrated a tendency towards increased
susceptibility to hypertension for the SOD3 rs2536512-GG genotype [272]. On the contrary,
this variant was associated with a lower blood pression in a previous study on 1388 par-
ticipants [273]. No association was found by X. Dong and coll. (2014) in a cohort of 343
hypertensive and 290 normotensive subjects [274].

Both endothelin (ET) system preservation [193], and an atheroprotective effect, via
monocyte endothelial trafficking and transmigration suppression, can be counted among
the various cardiovascular protective effects exerted by SOD agents [192].

Indeed, the MnP SOD mimetic AEOL 10150-injected s.c., reduced oxidative-stress
markers, such as plasmatic isoprostane and 3-nitrotyrosine, as well as endothelins (ETs),
in Fischer 344 rats, which are an inbred normotensive healthy rat model [193]. On the
other hand, TAT-SOD, at 0.5 µM, inhibited the TNF-α-induced stimulation of vascular-cell
adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs), and
integrin β1 in THP-1 monocytes. The prevention of transendothelial monocyte migration
was supported by the firm localization of occludin-1, platelet/endothelial cell adhesion
molecule-1 (PECAM-1), and vascular endothelial-cadherin at paracellular junctions, as well
as the inhibition of endothelial matrix-degrading, matrix metalloproteinases (MMPs) [192].
The antioxidant effect of SOD at the cardiovascular level has also been demonstrated in
human aortic endothelial cells (HAEC), in which nano-SOD decreased linoleic acid-induced
oxidative stress, as demonstrated by the in vivo assessment of nano-SOD in vascular-cell
activation in a mouse model of diet-induced obesity. Nano-SOD caused a significant
decrease in vascular-cell activation in the thoracic aorta, in heart inflammation and in MMP
expression in the aorta and ventricles [191].

Finally, a paper was published, in 2018, on SOD supplementation for the treatment
of peripheral arterial disease (PAD). The study used the ligation of the femoral artery in
rats as a model of PAD. This model causes an abnormal autonomic response that was
significantly reduced after tempol administration [194].
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5.6. Respiratory Diseases

Due to its specific functions, the respiratory apparatus is continuously and directly
exposed to oxidative stress from the environment and pathogens. Moreover, it is exposed
to higher oxygen tensions (∼13.3 kPa at the alveolus), and has a large surface area (adult
human lungs: ∼140 m2) [275]. These anatomical features make the lung a unique organ,
and one in which SOD is a primary defense from both the ROS produced during normal cell
homeostasis, and the ROS produced as a consequence of lung diseases. ROS importance
has been recognized in the etiopathogenesis of a variety of pulmonary diseases, including:
asthma; chronic obstructive pulmonary disease; pulmonary fibrosis; asbestosis; cystic
fibrosis; granulomatous lung disorders; sarcoidosis; allergic alveolitis; idiopathic interstitial
pneumonia; primary pulmonary hypertension; and complications associated with lung
transplantation [276].

In such a complex scenario, it is clear that SOD is an attractive strategy for the
treatment of several pathologies. However, recent years have seen relatively few in-depth
investigations, although pulmonary hypertension has probably received the most attention
overall. Pulmonary hypertension is characterized by pulmonary vascular remodeling that
leads to high blood pressure in the pulmonary artery and manifests as dyspnea both during
exercise and at rest [277]. Therapy is currently based on a combinatorial approach of two
or more drugs that are based on conventional vasodilators, but long-term outcomes are
still suboptimal [278]. Exogenous SOD is a possible candidate for add-on therapy because
of its radical scavenger activity, and its effect on the cardiovascular remodeling described
above. The SOD mimetic, EUK-134, was therefore tested in a model of monocrotaline
(MTC)-induced pulmonary hypertension in rats. In this study, EUK-134 (administered
i.p. at 3 mg/kg/day for 4 weeks) prevented the force decrease and actin modification in
the diaphragm bundles [201]. These results are in keeping with those obtained by L.R.
Villegas and coll. (2013), who used another SOD mimetic, MnTE-2PyP5+. This compound
attenuated chronic hypoxic pulmonary hypertension. More specifically, mice were exposed,
for up to 35 days, to 10% atmospheric oxygen using a hypobaric chamber, and MnTE-
2PyP5+ was administered s.c. at 5 mg/kg 3 times/week during the hypoxic exposure. The
SOD mimetic proactive effect against the increased right ventricular systolic pressure and
hypertrophy was sustained by a reduction in NLRP3 (nucleotide-binding domain leucine-
rich repeat (NLR) and pyrin domain containing receptor 3) inflammasome activation [202].

Finally, N. Gupta and coll. (2017) have formulated an inhalable combination ther-
apy, consisting of the vasodilator fasudil and SOD1, which was formulated in liposomes
equipped with CARSKNKDC (CAR), which is used as a homing peptide. The drug has
been tested in rats in both MTC-induced acute pulmonary hypertension and Sugen 5416
hypoxia-induced chronic pulmonary hypertension models. In the acute model, the CAR-
modified liposomes that contained fasudil and SOD elicited a more pronounced, prolonged
and selective reduction in the mean pulmonary arterial pressure than the unmodified
liposomes and plain drugs. In the chronic model, the effect induced by the CAR-modified
liposomes containing fasudil and SOD reduced the mean pulmonary arterial pressure by
50% and slowed the right ventricular hypertrophy [196]. The obtained results therefore
support the possible use of SOD as an add-on therapy in pulmonary hypertension.

Ischemia/reperfusion of the lung is usually associated with the unilateral-lung trans-
plantation that is required when end-stage respiratory failure occurs. The occurrence of
pulmonary ischemia/reperfusion inevitably causes the massive production and release of
superoxide radicals and inflammatory cytokines [279], with MMP activation [280]. There-
fore, it is not surprising, considering the homology with observations at the cardiovascular
level, that SOD1 (1000 U/kg i.v.) has been shown to attenuate ischemia/reperfusion-
induced contralateral lung injury by reducing pulmonary permeability, lipid peroxidation
and MMP activity [198].

SOD has also been tested as a protective agent during mechanical ventilation. Indeed,
the overinflating of the alveoli and repeated stretching of lung tissues promotes redox
imbalance and inflammatory responses [281]. It has been recognized that the detrimental
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events that occur during this mechanism can be treated with an antioxidant strategy, such
as an SOD-based therapy. For example, PC-SOD suppressed induced lung injury, im-
proving lung edema and elastance, in an experimental mechanical ventilation model [197].
Furthermore, SOD1, administered at 1000 U/kg/h i.v. to rats that underwent 5 h ventilation
with a high tidal volume (18 mL/kg), preserved lung-function integrity by reducing both
pulmonary oxidative stress and inflammation, preserving pulmonary-surfactant expression
and enhancing vascular NO bioavailability [199].

Lung protection during sepsis is another context in which SOD has been tested. The
inflammatory response in sepsis triggers ROS production in the lung [282]. Therefore, SOD
treatment may be effective for lung protection in this case as well. A paper by L. Constantino
and coll. (2014) demonstrated that the metal-based SOD mimetic [Fe(HPClNOL)Cl2]NO3
decreases nitrotyrosine and pro-inflammatory cytokine and improves lung permeability in
septic rats [200].

5.7. Neurological Diseases

The central nervous system is very sensitive to oxidative stress, with regions such as
the prefrontal cortex, the hippocampus and the amygdala being particularly susceptible to
oxidative-stress-related functional decline [283]. The consequent damage can lead to neu-
rodegenerative disorders that are associated with muscular and cognitive deficits, dementia
and psychiatric disorders. Indeed, oxidative stress has been reported to have a detrimental
effect on the formation of neuronal plaques, the amyloid β protein in Alzheimer’s disease,
α-synuclein in Parkinson’s disease and the mutant Huntington protein in Huntington’s dis-
ease [284]. Simultaneously, oxidative stress is also involved in some psychiatric disorders,
including depression, anxiety, schizophrenia and the autism spectrum [285]. On this basis,
using antioxidants as a pharmacological strategy for a broad spectrum of neurological
applications has been hypothesized. Despite these assumptions, a relatively low number
of papers have explored the role of SOD as a therapeutic intervention. One of these is a
randomized, double-blind, placebo-controlled clinical pilot study investigating the use
of 12-week-long SODB supplementation (Extramel® 140 U of SOD, Bionov, Eyragues,
France) on psychological stress, and physical and mental fatigue in 61 healthy volunteers.
Supplementation was effective against perceived stress and fatigue [178]. Similar results
have recently been reported in a monocentric, controlled trial vs. the placebo, randomized,
double-blind trial performed from November 2016 to March 2018. The study included
41 healthy volunteers (all men, mean age of 38.8 years old, body mass index between
18.5 and 29.5 kg/m2) with a stable weight and a stable diet over the past 3 months and
no contraindication to the practice of running. The study demonstrated a lower initial
inflammatory state in the SODB group which was maintained during and after the training
session, whereas the placebo group experienced a significant increase in inflammation.
The authors identified an increase in the PARγ coactivator 1-alpha (PGC-1alpha) and
the consequent myosin fibers rearrangement the lading pathway for adaptation to effort,
endurance, performance [179].

Other applications have only been investigated at the experimental level. S. cerevisiae
is a suitable eukaryotic model for aging as it recapitulates the susceptibility of human cells
to the proteotoxicity of α-synuclein, amyloid-β, the poliQ trait of Huntington’s and mutant
forms of SOD1 [180]. This model has been used to investigate the possible use of SOD
mimetics as therapeutic agents against aging-related diseases, such as Parkinson’s and
Alzheimer’s, and promising results have been obtained [286].

A study by A. Clausen and coll. (2012) has investigated the effect of the SOD/CAT
mimetic EUK-207 on learning and memory in an experimental model of Alzheimer’s
disease. The compound, which had already been tested on age-related learning and
memory impairment in mice [184], was administered to triple-transgenic Alzheimer’s
disease (3xTg-AD) mice that expressed mutant forms of the amyloid-protein precursor and
presenilin 1 (found in hereditary forms of Alzheimer’s disease), and a mutated form of the
microtubule-associated protein tau (associated with frontal temporal dementia) [287]. EUK-
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207-treated 3xTg-AD mice did not display any deficit in fear conditioning while, in parallel,
reduced tau and phosphorylated tau accumulation were observed in the amygdala and
hippocampus and reduced nucleic acid oxidation and lipid peroxidation were observed
in the brain [185]. Using the TgCRND8 Alzheimer’s disease model, which is a transgenic
mouse model that presents an aberrant cleavage of the amyloid β precursor, it has been
demonstrated that oral SOD supplementation reduces thiol levels in plasma [181].

SOD mimetics have also been investigated as a potential treatment for stroke. This is
not surprising when we consider that increased ROS levels cause protein, lipid and DNA
damage after cerebral ischemia. Accordingly, the neuroprotective effect of the MnP SOD2m
MnTM-4-PyP5+ has been demonstrated in a mouse model of the transient occlusion of
the middle cerebral artery (MCAO). The study showed a reduction in infarct volume and
improved neurological function after the intravenous administration of MnTM-4-PyP5+,
30 min before surgery [186]. Similar effects were observed in rats that were subjected to
MCAO in order to investigate tempol microdialysation (10 mM) and intracerebroventricular
injection (500 nmol 15 min before MCAO). The functional benefits observed were sustained
by reducing glutamate, aspartate, taurine and alanine release [187].

As described above, the association between SOD and ALS, mostly highlighted in the
KO studies, is also very interesting. However, it has yet to be established whether a loss of
function is the underlying mechanism in SOD1-related motor neuron disease, meaning that
the usefulness of SOD targeting as an approach for ALS has yet to be defined [288–290].

Interestingly, the results of a first clinical study (Phase 1/2 trial) to test the efficacy of
tofersen, an antisense oligonucleotide that mediates the degradation of the SOD1 messen-
ger RNA to reduce SOD1 protein synthesis in ALS patients, have just been published in the
New England Journal of Medicine [291]. The results are promising, and tofersen is already
undergoing a Phase 3, randomized, double-blind, placebo-controlled trial with long-term
extension included (ClinicalTrials.gov numbers, NCT02623699 and NCT03070119, respec-
tively, accessed on 19 March 2021).

The increased oxidative stress status has also been recognized in Down syndrome.
This syndrome is due to the trisomy of chromosome 21. Therefore, the overexpression of
genes located on chromosome 21 (including SOD1) is considered to be an essential feature
for the Down syndrome phenotype [292]. Several reports have demonstrated the overex-
pression and/or overactivation of SOD1 not only in the amniotic fluid of Down syndrome
fetuses [293], but also in several cells and tissues of Down syndrome patients. For instance,
N.B. Domingues and coll. (2017) have demonstrated that SOD activity is increased in
the saliva of children with Down syndrome compared to the control group [294]. Similar
results were obtained in cultured primary nasal epithelial cells from Down syndrome chil-
dren that exhibited an increased in SOD1 content (about 28%), compared to children with a
normal karyogram [295], as well as in the plasma of Down syndrome children [296]. The
cognitive impairments and premature signs of aging associated with Down syndrome have
been associated with the SOD1/GPx ratio in the brain [297]. Despite all this evidence, an-
tioxidant supplementation was not effective on the cognitive functions of Down syndrome
patients [298]. Therefore, SOD targeting is currently not a recommended strategy [299], and
further studies evaluating a variety of SOD supplements, dose-escalation and the duration
of administration should be considered.

As mentioned above, neural tissue is particularly susceptible to ROS damage, and ROS
accumulation in the spinal cord is considered crucial in the development of neuropathic
pain [300]. SOD has consequently been tested in a chronic model of central pain that was
induced by spinal cord injury (L1 spinal contusion in rats). SOD was i.p. administered and
able to increase the paw-withdrawal threshold, thus indicating that there was a reduction
in mechanical allodynia. The enhancement of spinal phosphorylated NMDA receptor
subunit 1 (pNR-1) has been indicated as a possible mechanistic interpretation of this
effect [182]. Similar results were also obtained in another model of neuropathic pain.
Unilateral painful C7 root compression, where free SOD was compared with a different
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form of SOD preparation, was performed in rats; the SOD-loaded porous polymersomes
were more effective than free SOD because of their better bioavailability [183].

The effect of SOD on inflammatory pain has also been tested. For instance, in a
model of potassium superoxide (KO2)-induced pain and inflammation in mice, tempol
(10–100 mg/kg) was i.p. injected 40 min before the intraplantar injection of KO2 and was
able to reduce mechanical and thermal hyperalgesia and paw edema. Tempol has also
been observed to have similar beneficial effects in both carrageenan and complete Freund’s
adjuvant inflammatory hyperalgesia models. The mechanisms underlying the analgesic
and anti-inflammatory effects involve the inhibition of the glial markers that are induced
in the spinal cord, and an increase in Nrf2, which is downregulated by KO2 injection into
paw skin and the spinal cord [188].

5.8. Skin Diseases

The skin barrier is a primary defense system that protects the body from harmful
external insults, making oxidative stress and the consequent production and accumulation
of ROS critical. In wound healing, ROS participates in the inflammatory phase, during
which a variety of immune cells are recruited, and ROS are generated, in large amounts, to
counteract invading pathogens and promote their phagocytosis. However, the downside
is the overproduction of superoxide and peroxynitrite, which can negatively affect the
surrounding tissues [301]. The role of SOD as a radical scavenger appears to be clear in this
setting, and its use in wound repair is attractive. Accordingly, an SOD1-based hydrogel
of carboxymethylcellulose has been observed to improve the healing of open wounds on
the back skin of rats by stimulating fibroblast proliferation [208]. Consistently, a novel
SOD-loaded thermo-sensitive hydrogel-poly(N-isopropyl-acrylamide)/poly(γ-glutamic
acid) was developed by Y. Dong and coll. (2020). This formulation showed good biocom-
patibility and a wound closure rate after 21 days of operation, of up to 92% in diabetic
rats [213]. Furthermore, SOD2 stimulated wound healing in streptozotocin-induced type
I diabetes rats [209]. The efficacy of a strategy that combines SOD2m MnTE-2PyP5+ and
negative pressure wound therapy (NPWT), a widely used management tool in surgical
and trauma wounds, has more recently been investigated. The preclinical study demon-
strated that MnTE-2PyP5+ is a wound-healing enhancer; its topical application promoted
wound closure within two days [212]. A similar approach, which uses the properties
of SOD to enhance the therapeutic effects of other therapies, involves the formulation
of MSC that overexpress SOD3. This treatment has been tested in both psoriasis [214],
and dermatitis [215]. In this approach, the immune-modulatory effects of MSCs are en-
hanced by the antioxidant effect of SOD3, which also shows anti-inflammatory properties.
MSCs have long been studied for their properties and importance in managing several
skin diseases, including: wound healing; burn injuries; epidermolysis bullosa; systemic
lupus erythematosus; dermatomyositis; systemic sclerosis; photoaging; acne; psoriasis;
and atopic dermatitis [302]. SOD3-overexpressing MSCs specifically prevented the de-
velopment of psoriasis in a mouse model of imiquimod (IMQ)-induced psoriasis-like
inflammation via the inhibition of the TLR7/MAPKs/NF-κB axis and the activation of
the adenosine receptor [214]. Similarly, SOD3 inhibited TLR2/MAPKs/NF-κB and the
NLRP3 inflammasome, and consequently suppressed inflammation in a mouse model of
Propionibacterium acnes-induced skin inflammation [210]. Moreover, SOD3 suppressed the
inflammatory response induced in human keratinocytes and mast cells by cathelicidin
(LL-37) and serine protease kallikrein-5 exposure (KLK-5), suppressing the activation of
epidermal growth factor receptor (EGFR) and the p38 MAPK pathway [211].

The immune-modulatory and anti-inflammatory effects of MSCs that overexpress
SOD3 also proceed via the inhibition of histamine H4 receptor expression and consequently,
of the associated signaling cascade in murine dermatitis-like skin inflammation, as induced
by ovalbumin [215]. Consistently with the demonstration of SOD as a therapeutic agent for
skin diseases, the most recently published data explore a new SOD mimetic, the RM191A:
a water-soluble dimeric copper (Cu2+-Cu3+)-centered polyglycine coordination complex



Molecules 2021, 26, 1844 22 of 40

with superoxide quenching activity 10-fold higher than that of SOD. This compound,
which is under Phase 2 investigation for the relief of neuropathic pain as a local spray
(registration number ACTRN12617000206325; https://www.anzctr.org.au, last accessed
on 19 March 2021), was demonstrated to accelerate excisional wound healing, reduce
12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation, and attenuate age-
associated oxidative stress in skin when administered to mice as topical gel [216].

6. SOD Sources

Different SOD-based compounds have been tested; from plant and animal extracts
and SOD recombinant forms to SOD mimetics and SOD gene therapy (Table 3).

Table 3. SOD-based compounds tested for potential therapeutic applications between 2012 and 2020.

SOD/SOD Donor SOD Mimetics Gene Therapy

CAR-modified liposomes fasudil
plus SOD [Fe(HPClNOL)Cl2]NO3 SOD3-overexpressing MSCs

gliadin SOD MnTDE-2-ImP5+

hEC-SOD Calmangafodipir *
MS-AOE® EUK-134
nano-SOD EUK-207

O-HTCC-SOD GC4419 *
PC-SOD Nano-MnTnBuOE-2-PyP5+

rMnSOD * Mangafodipir *
SOD-loaded thermo-sensitive
hydrogel-poly(N-isopropyl-

acrylamide)/poly(γ-
glutamic acid)

mito-tempo

SOD-loaded porous polymersome Mn1
SOD * MnTE-2-PyP5+ *
SOD1 MnTM-4-PyP5+

SOD2 MnTnBuOE-2-PyP5+ *
SOD2 by Bacillus amyloliquefaciens

strain MnTnHex-2-PyP5+

SOD3 RM191A *
SODB * SOD2m

TAT-SOD * Tempol *
rMnSOD = recombinant SOD2. PC-SOD = lecithinized Cu, Zn-SOD. O-HTCC- = O-(2-hydroxyl)propyl-3-trimethyl
ammonium chitosan chloride. hEC-SOD = human recombinant SOD3. MS-AOE® = Multi-modified stable anti-
oxidant enzymes®. SODB = Cucumis melo L.C. derived SOD. nano-SOD = SOD1 encapsulated in poly-L-lysine
(PLL50)-polyethylene glycol (PEG), cross-linked with a reducible cross-linker. TAT = human immunodeficiency
virus type 1 (HIV) transactivator of transcription. SOD2m = SOD2 mimetic. MSCs = mesenchymal stromal
cells. * also tested in clinical studies (https://clinicaltrials.gov or https://www.anzctr.org.au, last accessed on
19 March 2021).

This heterogeneity stems from the need for an exogenous SOD with optimal pharma-
cokinetics properties. Exogenous SOD has relatively low bioavailability, especially when
orally administered. Indeed, due to its enzymatic nature, exogenous SOD is digested and
denatured in the stomach. Moreover, it should be noted that exogenous SOD has a high
molecular weight, meaning that cellular uptake is limited, even when it is injected [21].
These aspects explain why SOD use is restricted to drug applications in animals, and to
non-drug applications in humans (including supplements, cosmetics, food, agriculture
and chemical industries) [303]. Although exogenous SOD administration has often proven
problematic, a variety of innovative approaches are currently being explored [12]. SODB
has been considered the gold standard for the dietary supplementation of SOD since 2000.
However, its efficacy is affected by the low pH and high proteolytic activity in the digestive
tract [16]. Research on designing formulations with SOD encapsulated in lipids and/or
proteins has been performed to overcome the low bioavailability of natural SOD. Thus far,
gliadin-SOD, nano-SOD and O-HTCC-SOD (Table 3) have been created. These products
should protect the enzyme from degradation, but do not entirely solve the absorption
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problem caused by SOD’s high molecular weight [16]. Indeed, if the formulation scaffold
cannot activate tight-junction promoting absorption, intestinal permeability is still lim-
ited. Therefore, another strategy has been pursued since the late 1970s; the development
of synthetic antioxidant enzymes, SOD mimetics, that were developed to overcome the
bioavailability problem of SOD supplementation. SOD mimetics are characterized by
low-molecular weight (about 483 Da) and better intestinal permeability when adminis-
tered orally, but this also grants a higher circulating half-life and lower antigenicity [24].
Approaches for the future of this field seem to include gene therapy to produce more
antioxidants in the body, for instance, by creating stem cells that overexpress the SOD
enzyme via genetic modifications. The development of SOD3-overexpressing MSCs is
being investigated in this field. The aim here is to overcome the limits of MSC therapy, such
as circumscribed survival and reduced immunomodulatory potential, using the benefits of
SOD3 antioxidant and immunomodulatory activity [304]. Future studies will provide more
in-depth knowledge of the feasibility of this strategy. In addition to these pharmaceutical
approaches, several sources of exogenous SOD have been pursued. SOD was formerly ob-
tained from the liver and serum of mammals such as pigs, horses, bulls and dogs [303]. Of
these, bovine-derived SOD, known as orgotein, has been licensed as a veterinary product
for use as a non-steroidal anti-inflammatory drug (ATC code M01AX14). Nowadays, if not
of human origin, (recombinant human SOD), SOD is mostly derived from terrestrial and
marine plants, microbial, cyanobacterial and chromista sources (Table 4). However, marine
and terrestrial fungi, as well as yeasts, are also important sources of SOD.

Table 4. Examples of major exogenous natural SOD sources.

Terrestrial Plants Microbial Cyanobacteria Chromista Marine Plants

Allium cepa L. Anabaena Geobacillus sp. Anabaena cylindrica Lingulodinium
polyedrum Avicennia marina

Anacardium occidentale L. Bacillus amyloliquefaciens Anabaena variabilis
Kutz

Minutocellus
polymorphus Bruguiera gymnorrhiza

Camellia sinensis Bacillus subtilis Cyanobacterium
synechococcus Nitzschia closterium Enteromorpha linza

Cucumis melo L.C. Brucella abortus Microcystis aeruginosa Thallassiosira
weissflogii

Platymonas
subcordiformis

Cucurbitamoschata L. Caulobacter crescentus Nostoc commune Porphyridium
cruentum

Fagopyrum tataricum Escherichia coli Nostoc PCC 7120 Sonneratia alba
Gossypium herbaceum L. Haemophilus influenzae Plectonema boryanum Tetraselmis gracilis

Hordeum vulgare Haemophilus
parainfluenzae Plectonema boryanum

Luffa cylindrical Lactobacillus fermentum
Momordica charantia Nodularia Aphanizomenon

Momordicacharantia L. Photobacterium leiognathi

Nicotiana tabacum Photobacterium
phosphoreum

Olea europaea L. Photobacterium sepia
Pisum sativum Pseudomonas aeruginosa

Rosmarinus officinalis *
Saccharum spp.

Salvia officinalis *
Syzygium cumini

Thymus officinalis *
Vitis vinifera L.

Zea mays L.

* Culinary herbs with SOD mimetic activity.

The use of SODs from various sources reflects the need to emphasize different proper-
ties of different forms of the enzyme, with the different sources mainly used for specific
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applications; plant-derived SOD is mostly used for supplements and nutraceuticals, while
SOD from marine source is used in cosmetics [305]. Plants have three isoforms of SOD:
chloroplastic and cytosolic Cu, Zn-SOD; mitochondria Mn-SOD; and chloroplastic and plas-
tidial Fe-SOD [21,306]. Cyanobacteria and marine creatures contain the Ni-SOD isoform.
Cu, Zn-SOD, Ni-SOD and Fe-SOD are very sensitive to H2O2, but Cu, Zn-SOD and Ni-SOD
are also sensitive to cyanide. Mn-SOD is insensitive to both H2O2 and cyanide [306]. Fe-
SOD has also been found in prokaryotes, including marine bacteria, such as Photobacterium
leiognathi and Photobacterium sepia, as well as in protozoans and the chloroplasts of algae
such as Lingulodinium polyedrum [303]. The use of these SODs for large scale commercial-
ization has often been limited by the minimal SOD content and the high cost of extraction
methods. Therefore, the most used source of SOD has been Cucumis melo L.C., in which
SOD is extracted from dried melon pulp with relatively high efficiency; 1 kg of freeze-dried
concentrated melon juice [307], containing 90,000 U/g of SOD, is obtained from 15 kg of
melon pulp, after filtration and concentration steps [20]. By comparison, other terrestrial
plant sources of SOD have a low abundance of the enzyme. For instance, it is possible to
extract 5–44 U/min/g fresh weight of SOD from sugarcane leaves [21]. However, several
strategies have been developed to enhance SOD activity, more than 100-fold, and make
these alternative sources effective drugs. For instance, Z. Hou and coll. (2019) have signifi-
cantly improved the extraction of SOD from sea buckthorn and chestnut rose by adding
purification steps, such as ammonium sulfate precipitation and anion exchange chromatog-
raphy [308]. Furthermore, changing the salinity or adding heavy metals to the ground has
been seen to provoke water deficiency, as does reducing or increasing the temperature,
inducing an oxidative-stress response that led to SOD-content increases [21]. Moreover,
culinary herbs such as Rosmarinus officinalis, Thymus officinalis and Salvia officinalis possess
SOD mimetic activity that can even increase when cooked, or cooked and digested [309].

According to the literature sources reported herein, SOD mimetics can be divided into
different classes according to their structure: cyclic polyamines; MnPLEDs; MnP; salen–Mn
complexes; three metal-based compounds; and nitroxides (Table 5).

Table 5. A proposed SOD mimetic classification.

Cyclic
Polyamines MnPLED MnPs Salen-Mn

Complexes
Metal-Based
Compounds Nitroxide

GC4419 calmangafodipir MnTDE-2-ImP5+ EUK-134 [Fe(HPClNOL)Cl2]NO3 mito-tempo
Mn1 mangafodipir MnTE-2-PyP5+ EUK-207 RM191A tempol

MnTM-4-PyP5+

MnTnBuOE-2-PyP5+

MnTnHex-2-PyP5+

MnP = Mn porphyrin. MnPLED = Manganese pyridoxyl ethyldiamine derivatives.

These structural differences can result in differing pharmacokinetic properties, includ-
ing the route of administration and subsequent bioavailability. While the pharmacokinetics
of MnPs have been widely investigated, a similar in-depth pharmacokinetic analysis is not
available for other SOD mimetics, as reported by I. Batinic-Haberle and coll. (2018) [25].
Therefore, a proper pharmacokinetic comparison of the different SOD-based strategies is
not possible.

Useful tools for classification can be found in the review by R. Bonetta (2018) [24]. A
more extensive analysis of MnP compounds has been reported by I. Batinic-Haberle and
coll. (2018) [25], I. Batinic-Haberle and I. Spasojevic [26] and I. Batinic-Haberle and M.E.
Tome [27]. Briefly, the cyclic polyamine class differs in the metal, Fe2+, Mn2+ and even Cu2+,
as well as in the polyamine moiety. However, they all have a dose-proportional response
curve [310,311], instead of a bell-shaped dose-response curve, which is characteristic of
the natural SOD enzyme [312]. Within this class, GC4419 has been extensively described.
Developed by Galera Therapeutics, Inc. as a 1,4,7,10,13-pentazazcyclopentadecane deriva-
tive, it has already been tested in humans for the treatment of oral-mucositis as induced by



Molecules 2021, 26, 1844 25 of 40

radiation-concurrent cisplatin treatment [170]. MnPLEDs have several antioxidant proper-
ties, including the inhibition of SOD, GPx and CAT activity, as well as iron-binding, and
consequently, the Fenton reaction. Accordingly, these compounds inhibit the formation of
both ONOO− and •OH and increase H2O2 detoxification [313]. MnP-based SOD mimetics
combine the effect evoked by the Mn moiety on •O2

− dismutation, via the reduction of
Mn3+ to Mn2+ and its oxidization back to Mn3+, with the CAT activity that is attributed to
the porphyrin radical cation’s ability to undergo oxidation to higher oxidation states, Mn4+

or Mn5+ [314]. Moreover, MnPs can produce H2O2 by first undergoing rapid one-electron
reduction with endogenous or exogenous ascorbate or thiols, and then being re-oxidized
by O2 or •O2

− [25]. MnPs offer several favorable features, including the absence of anti-
genicity, high stability that assures the integrity of the metal site, and low molecular
weight [315]. Moreover, various delivery systems can reduce side effects such as acute
hypotensive response observed with MnTnBuOE-2-PyP5+. Under this task, S.L. Schlichte
(2020) developed a mesoporous silica nanoparticle and lipid bilayer nanoformulation of
MnTnBuOE-2-PyP5+. The nanoformulation allows a slow and sustained release of the
drug, thus reducing the acute reduction in renal sympathetic nerve activity induced by the
injection of the free drug [316].

From a mechanistic point of view, this class is far beyond just being a radical scav-
enger as they add the reaction with H2O2, •O2

− and ONOO− to that with thiols. This last
property is responsible for activating the Keap1/Nrf2 pathway, which is responsible for
transcriptional activity, and SOD upregulation [25,27]. Salen-Mn complexes are thought
to have SOD/CAT biomimetic activity. A multi-step process describes their mechanism
of action: (i) interaction with •O2

− reduces Mn3+ to Mn2+; (ii) Mn2+ is oxidized back to
Mn3+ by •O2

− consumption; (iii) salen-manganese is oxidized to salen-oxomanganese
by H2O2; (iv) salen-oxomanganese is then reduced to salen-manganese by H2O2, liber-
ating H2O and O2. Moreover, they have even been reported to scavenge RNS. The EUK
compounds belong to this class. In particular, EUK-134 is a first-generation compound
(it has a non-cyclized structure), while EUK-207 is a second-generation compound with
greater stability due to this cyclized structure [24,317]. More recently, another class of
SOD/CAT mimetics has been added; the metal-based compounds. This class has a con-
served core, 1-[bis(pyridin-2-ylmethyl) amino]-3-chloropropan-2-ol (HPClNOL), that can
be complexed with Fe3+, Mn2+ and even Cu2+. Collectively, this class possesses intrinsic
•O2

- and H2O2 scavenger activity. Compared to the salen–manganese complexes, the
metal-based compounds have not been observed to affect the capacity of cells to synthesize
neutral lipids and to compartmentalize them into lipid droplets. Cell-membrane integrity
is thus maintained, hinting at possible higher efficacy against aging [286]. However, further
studies that explore the real mechanism of action of these compounds must be performed
to support this hypothesis. The classification of nitroxides as SOD mimetics is more con-
troversial. Some authors, like S. Miriyala and coll. (2012), have highlighted the inability
of nitroxides to catalytically scavenge superoxide [126]. Their mechanism includes reduc-
ing hydroxylamine within mitochondria [315], where these compounds display a weak
and pH-dependent SOD-like activity [24]. According to this mechanism, some authors
include nitroxide among SOD-mimetic compounds. However, this remains a controversial
proposal [24,176,188,220,318]. The discussion includes the classification of tempol and
mito-tempo as SOD mimetics. Tempol acts as a redox-cycling nitroxide water-soluble SOD
mimetic [24,176,188,220,318], and shares the activation of the PI3K/Akt/Nrf2 pathway
with other SOD mimetics [124,319,320]. Accordingly, the combination of tempol with the
TPP+ moiety, resulting in mito-tempo, is accepted as a SOD mimetic [127,321]. According
to the mechanistic interpretation of the SOD mimetic based on their ability to activate
the PI3K/Akt/Nrf2 pathway, other inducers of this pathway can be included among the
“source of SODs”. Therefore, the following could be added to the list: (i) the several
NRF2 activators such as dimethyl fumarate, bardoxolone methyl, sulforaphane, curcumin,
quercetin, and metformin; (ii) the PPARγ activators such as the antidiabetic drugs glita-
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zones, ankaflavin, monascin, and carotenoids; or (iii) the dual Nrf2 and PPARγ activators,
genistin, olmesartan, 18β-Glycyrrhetinic acid, and resveratrol, included [47,48,245].

7. Conclusions

The literature data that have been reported herein, covering papers published between
2012 and 2020 on the use of SODs for neurological, cardiovascular, respiratory, gastroin-
testinal, renal, skin, metabolic and ocular diseases, are indicative of the high efficacy of
all the SOD types tested, both natural SOD and SOD mimetics. Although SOD has been
an attractive potential therapeutic approach for 50 years, most of the published papers,
and even more so in the case of recent works, deal with experimental preclinical studies,
and only comparatively few clinical studies are ongoing. Notably, the spread of the pan-
demic COVID-19 infection, causing the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), further renewed the interest in pharmacological strategies to counteract
the oxidative stress response triggered by NOS. Accordingly, J.O.C. Karlsson and coll.
(2020) proposed mangafodipir to lower the inflammatory burden in critical SARS-CoV-2
infections [322]. In addition, just in September 2020, Galera Therapeutics, Inc. announced
the first randomized, double-blind pilot phase II clinical trial with GC4419 for COVID-19
(ClinicalTrials.gov numbers, NCT04555096, accessed on 19 March 2021). However, none
of the tested compounds have been approved to date. Several issues with the testing
conditions and the type of compound evaluated have hampered the translation of the
evidence for SOD use from the bench to the bedside. These topics can be summarized in
three major points.

Firstly, the heterogeneity of the various compounds used to enhance the levels of
SOD, from SOD extracts and SOD recombinant forms to SOD mimetics and SOD gene
therapy, is an issue, as is the lack of comparative head-to-head studies. This point is
strictly correlated with the second, which is the problem of bioavailability and the route of
administration for effective doses in humans, and the timing of administration in relation to
the dynamics of pathological process. Indeed, the optimal conditions for all the therapeutic
approaches have not yet been clearly established. In the absence of comparative studies,
even pharmacokinetics and toxicology data are not sufficient for a conclusive consensus on
which sources of SOD, doses and administration timings best reflect clinical needs. This is
also true for SOD mimetics, which are the most extensively studied type. MnPs are the
only compounds for which pharmacokinetics have been clearly defined [25]. However,
there is a lack of comparative studies against other sources of SOD and gold-standard
comparators—even here.

The third issue is the heterogeneity of the diseases in which SOD strategies have been
tested. Indeed, different compounds have been tested for similar applications, but have
not been compared. Furthermore, although the same compound has been used under
different pathological conditions, reported data cannot still define a specific indication for
human use. The spectrum of diseases evaluated is vast, and detrimental contributions by
ROS have been comprehensively demonstrated in each. However, oxidative stress can
be considered a generic mechanism present in almost all pathological processes, and it is
not unique to pathophysiological contexts. Therefore, its role as a drug target may vary
according to the disease type and underlying biochemical processes. The way in which
SOD affects oxidative stress may be regarded as a composite of direct (scavenger activity)
and indirect (stimulating gene transcription of antioxidant pathways) antioxidant effects,
as previously discussed.

The role of SOD merits a different type of discussion when considering ALS, in which
a mutant overactive SOD1 has been identified, and Down syndrome, in which chromosome
21 trisomy has been associated with the overexpression of SOD1 in patients. These last
two diseases remind us that SOD is a hormetic substance; added or over-expressed SOD
produces potential beneficial effects in almost all of the conditions tested. However, in some
circumstances, the benefits of SOD are either not so clear (i.e., gastrointestinal diseases) or
even detrimental (i.e., ALS), in that they can exacerbate cell injury and death [284]. The

ClinicalTrials.gov
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interpretation of SOD as a hormetic substance draws our attention to another adjunctive
issue when defining the therapeutic potential of SODs—the selection of the dose for optimal
and tight regulation.

These issues collectively confirm the role of SOD as a supplement, but do not yet
allow SOD to be conclusively repositioned as a drug that can be applied in the real world.
Further evidence from the ongoing clinical trials is eagerly anticipated.
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